scispace - formally typeset
Search or ask a question
Author

Kumbakonam R. Rajagopal

Bio: Kumbakonam R. Rajagopal is an academic researcher from Texas A&M University. The author has contributed to research in topics: Constitutive equation & Viscoelasticity. The author has an hindex of 77, co-authored 659 publications receiving 23443 citations. Previous affiliations of Kumbakonam R. Rajagopal include Kent State University & University of Wisconsin-Madison.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors considered the flow of an incompressible power-law fluid through convergent-divergent channels, where the choice of the viscosity is such that the stress tensor is not degenerate.
Abstract: The flow of an incompressible power-law fluid through convergent–divergent channels is considered where the choice of the viscosity is such that the stress tensor is not degenerate in the sense that the zero shear rate viscosity is neither zero nor infinity for any finite value of the power-law exponent in contrast to the earlier study by Mansutti and Rajagopal (1991) wherein the viscosity could be zero or infinity for certain values of the power-law exponent. We observe the appearance of boundary layers for the non-Newtonian fluid, even in the case of divergent flow. Sharp and pronounced boundary layers develop adjacent to the boundaries, even at zero Reynolds number. Furthermore, for values of the angle beyond a critical value, we detect regions of flow reversal; i.e. different flow regimes are observed wherein there is inflow and outflow. We are also able to assess the consequences of introducing a traction boundary condition at the boundaries of the channel on the behaviour of the fluid. In this case we find the possibility of asymmetric solutions. We also find a new solution in the case of the Navier–Stokes fluid, albeit numerical, by setting the power-law exponent to zero.

12 citations

Journal ArticleDOI
TL;DR: In this article, a general theory for the phenomenon of solidification is presented in which the coupling between the thermal and kinematical fields is fully taken into account, and the resulting model describes the liquid region as an ordinary Newtonian liquid and the solid phase as an elastic material.
Abstract: A general theory for the phenomenon of solidification is presented in which the coupling between the thermal and kinematical fields is fully taken into account. The resulting model descsribes the liquid region as an ordinary Newtonian liquid and the solid phase as an elastic material. In the case of multi-component solidification it allows for the existence of a mixed region separating the pure phases whose behavior is modeled as a non-linear viscoelastic material. After a preliminary analysis of the jump conditions across the singular surface separating the two phases, the strong interdependence between the thermomechanical field, the geometry of the singular surface and the freezing temperature θf is examined in detail. A simple one-dimensional problem (Boussinesq problem) has been discussed to show how only a dynamical theory can predict with reasonable accuracy the final shape of the solid.

12 citations

Journal ArticleDOI
01 Jan 1984
TL;DR: In this article, the authors considered the problem of finding the deformation of a nonlinear elastic layer contained between two infinite parallel rigid plates, each of which undergoes the same finite rotation, but about noncoincident axes.
Abstract: This paper considers the problem of finding the deformation of a nonlinear elastic layer contained between two infinite parallel rigid plates, each of which undergoes the same finite rotation, but about noncoincident axes. Each plane of the layer is assumed to rotate about a point whose position depends on its distance from the rigid bounding plates. The locus of these centers of rotation satisfies a differential equation which depends on the strain energy density of the material. In the case of a Mooney material, the locus is a straight line connecting the centers of rotation of the bounding plates, as is to be expected. It is shown that for a certain class of strain energy density functions, the solution is nonunique and consists of piecewise linear segments.

12 citations

Journal ArticleDOI
TL;DR: In this paper, the authors studied the response of a linearized elastic solid whose material properties change due to the diffusion of a chemical, and they found that the response characteristics of such structures that are exposed to the environment changes due to its impact such as oxidation due to moisture.
Abstract: Many structures are made of concrete and steel. The response characteristics of such structures that are exposed to the environment change due to its impact such as oxidation due to moisture. Usually the structural element “degrades” in that the load bearing capacity decreases; it also decreases due to “aging”. On the other hand, chemicals are infused into biological systems in order to enhance their strength. Thus far, not much attention has been paid to studying such problems. In this investigation, we study the response of a linearized elastic solid whose material properties change due to the diffusion of a chemical.

11 citations

Journal ArticleDOI
TL;DR: In this paper, the authors show that the classical approach for obtaining the governing equation for the vibration of lumped parameter systems is not sufficiently general enough to incorporate well accepted mechanisms for the dissipation and for the storage of energy that are constituents of the vibrating system.

11 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors developed a constitutive law for the description of the (passive) mechanical response of arterial tissue, where the artery is modeled as a thick-walled nonlinearly elastic circular cylindrical tube consisting of two layers corresponding to the media and adventitia.
Abstract: In this paper we develop a new constitutive law for the description of the (passive) mechanical response of arterial tissue. The artery is modeled as a thick-walled nonlinearly elastic circular cylindrical tube consisting of two layers corresponding to the media and adventitia (the solid mechanically relevant layers in healthy tissue). Each layer is treated as a fiber-reinforced material with the fibers corresponding to the collagenous component of the material and symmetrically disposed with respect to the cylinder axis. The resulting constitutive law is orthotropic in each layer. Fiber orientations obtained from a statistical analysis of histological sections from each arterial layer are used. A specific form of the law, which requires only three material parameters for each layer, is used to study the response of an artery under combined axial extension, inflation and torsion. The characteristic and very important residual stress in an artery in vitro is accounted for by assuming that the natural (unstressed and unstrained) configuration of the material corresponds to an open sector of a tube, which is then closed by an initial bending to form a load-free, but stressed, circular cylindrical configuration prior to application of the extension, inflation and torsion. The effect of residual stress on the stress distribution through the deformed arterial wall in the physiological state is examined. The model is fitted to available data on arteries and its predictions are assessed for the considered combined loadings. It is explained how the new model is designed to avoid certain mechanical, mathematical and computational deficiencies evident in currently available phenomenological models. A critical review of these models is provided by way of background to the development of the new model.

2,887 citations

Journal ArticleDOI
TL;DR: In this paper, a simple model that satisfies most of these criteria uses depth-averaged equations of motion patterned after those of the Savage-Hutter theory for gravity-driven flow of dry granular masses but generalized to include the effects of viscous pore fluid with varying pressure.
Abstract: Recent advances in theory and experimen- tation motivate a thorough reassessment of the physics of debris flows. Analyses of flows of dry, granular solids and solid-fluid mixtures provide a foundation for a com- prehensive debris flow theory, and experiments provide data that reveal the strengths and limitations of theoret- ical models. Both debris flow materials and dry granular materials can sustain shear stresses while remaining stat- ic; both can deform in a slow, tranquil mode character- ized by enduring, frictional grain contacts; and both can flow in a more rapid, agitated mode characterized by brief, inelastic grain collisions. In debris flows, however, pore fluid that is highly viscous and nearly incompress- ible, composed of water with suspended silt and clay, can strongly mediate intergranular friction and collisions. Grain friction, grain collisions, and viscous fluid flow may transfer significant momentum simultaneously. Both the vibrational kinetic energy of solid grains (mea- sured by a quantity termed the granular temperature) and the pressure of the intervening pore fluid facilitate motion of grains past one another, thereby enhancing debris flow mobility. Granular temperature arises from conversion of flow translational energy to grain vibra- tional energy, a process that depends on shear rates, grain properties, boundary conditions, and the ambient fluid viscosity and pressure. Pore fluid pressures that exceed static equilibrium pressures result from local or global debris contraction. Like larger, natural debris flows, experimental debris flows of ;10 m 3 of poorly sorted, water-saturated sediment invariably move as an unsteady surge or series of surges. Measurements at the base of experimental flows show that coarse-grained surge fronts have little or no pore fluid pressure. In contrast, finer-grained, thoroughly saturated debris be- hind surge fronts is nearly liquefied by high pore pres- sure, which persists owing to the great compressibility and moderate permeability of the debris. Realistic mod- els of debris flows therefore require equations that sim- ulate inertial motion of surges in which high-resistance fronts dominated by solid forces impede the motion of low-resistance tails more strongly influenced by fluid forces. Furthermore, because debris flows characteristi- cally originate as nearly rigid sediment masses, trans- form at least partly to liquefied flows, and then trans- form again to nearly rigid deposits, acceptable models must simulate an evolution of material behavior without invoking preternatural changes in material properties. A simple model that satisfies most of these criteria uses depth-averaged equations of motion patterned after those of the Savage-Hutter theory for gravity-driven flow of dry granular masses but generalized to include the effects of viscous pore fluid with varying pressure. These equations can describe a spectrum of debris flow behav- iors intermediate between those of wet rock avalanches and sediment-laden water floods. With appropriate pore pressure distributions the equations yield numerical so- lutions that successfully predict unsteady, nonuniform motion of experimental debris flows.

2,426 citations

01 Mar 1987
TL;DR: The variable-order Adams method (SIVA/DIVA) package as discussed by the authors is a collection of subroutines for solution of non-stiff ODEs.
Abstract: Initial-value ordinary differential equation solution via variable order Adams method (SIVA/DIVA) package is collection of subroutines for solution of nonstiff ordinary differential equations. There are versions for single-precision and double-precision arithmetic. Requires fewer evaluations of derivatives than other variable-order Adams predictor/ corrector methods. Option for direct integration of second-order equations makes integration of trajectory problems significantly more efficient. Written in FORTRAN 77.

1,955 citations

Journal ArticleDOI
TL;DR: A structural continuum framework that is able to represent the dispersion of the collagen fibre orientation is developed and allows the development of a new hyperelastic free-energy function that is particularly suited for representing the anisotropic elastic properties of adventitial and intimal layers of arterial walls.
Abstract: Constitutive relations are fundamental to the solution of problems in continuum mechanics, and are required in the study of, for example, mechanically dominated clinical interventions involving soft biological tissues. Structural continuum constitutive models of arterial layers integrate information about the tissue morphology and therefore allow investigation of the interrelation between structure and function in response to mechanical loading. Collagen fibres are key ingredients in the structure of arteries. In the media (the middle layer of the artery wall) they are arranged in two helically distributed families with a small pitch and very little dispersion in their orientation (i.e. they are aligned quite close to the circumferential direction). By contrast, in the adventitial and intimal layers, the orientation of the collagen fibres is dispersed, as shown by polarized light microscopy of stained arterial tissue. As a result, continuum models that do not account for the dispersion are not able to capture accurately the stress–strain response of these layers. The purpose of this paper, therefore, is to develop a structural continuum framework that is able to represent the dispersion of the collagen fibre orientation. This then allows the development of a new hyperelastic free-energy function that is particularly suited for representing the anisotropic elastic properties of adventitial and intimal layers of arterial walls, and is a generalization of the fibre-reinforced structural model introduced by Holzapfel & Gasser (Holzapfel & Gasser 2001 Comput. Meth. Appl. Mech. Eng. 190, 4379–4403) and Holzapfel et al. (Holzapfel et al. 2000 J. Elast. 61, 1–48). The model incorporates an additional scalar structure parameter that characterizes the dispersed collagen orientation. An efficient finite element implementation of the model is then presented and numerical examples show that the dispersion of the orientation of collagen fibres in the adventitia of human iliac arteries has a significant effect on their mechanical response.

1,905 citations