scispace - formally typeset
Search or ask a question
Author

Kumbakonam R. Rajagopal

Bio: Kumbakonam R. Rajagopal is an academic researcher from Texas A&M University. The author has contributed to research in topics: Constitutive equation & Viscoelasticity. The author has an hindex of 77, co-authored 659 publications receiving 23443 citations. Previous affiliations of Kumbakonam R. Rajagopal include Kent State University & University of Wisconsin-Madison.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present the results of a set of transient experiments conducted on asphalt binders that serve to highlight the nonlinearity of the viscoelastic response of binders.
Abstract: This paper presents the results of a set of transient experiments conducted on asphalt binders that serve to highlight the nonlinearity of the viscoelastic response of asphalt binders. Two grades of binders were used in this study. A transient test that combines both creep and stress relaxation tests was conducted using a dynamic shear rheometer at several loading conditions and at different temperatures. The acquired experimental data was satisfactorily fit using a nonlinear six-parameter viscoelastic model.

11 citations

Journal ArticleDOI
TL;DR: In this paper, the authors studied the classical problem of extension, inflation, and circumferential shearing of an annular cylinder for a new class of compressible elastic bodies wherein the left Cauchy-Green deformation tensor is given as a function of the Cauche stress tensor.
Abstract: This paper studies the classical problem of extension, inflation, and circumferential shearing of an annular cylinder for a new class of compressible elastic bodies wherein the left Cauchy–Green deformation tensor is given as a function of the Cauchy stress tensor. We use a semi-inverse method to study the problem by assuming forms for both the deformation field and the stress field. Focusing our attention on to three specific constitutive relations and two geometries corresponding to thick and thin annular cylinders, we study the qualitative features of the governing differential equations. The models are chosen so that they exhibit qualitatively different response features, one of them displaying a limiting stretch. The classical assumption that the hoop and axial stresses are nearly constant through the thickness of the thin annular cylinder subjected to inflation holds for this class of elastic bodies too. However, for thick-walled annular cylinders subjected to inflation at constant length and for a ...

11 citations

Posted Content
TL;DR: In this paper, the authors make a clear distinction between traffic flow stability and string stability, and such a dis-tinction has not been recognized in the literature, thus far, thus they make their analysis without adding vehicles to or removing vehicles from the traffic.
Abstract: In analogy to the flow of fluids, it is expected that the aggregate density and the velocity of vehicles in a section of a freeway adequately describe the traffic flow dynamics. The conservation of mass equation together with the aggregation of the vehicle following dynamics of controlled vehicles describes the evolution of the traffic density and the aggregate speed of a traffic flow. There are two kinds of stability associated with traffic flow problems - string stability (or car-following stability) and traffic flow stability. We make a clear distinction between traffic flow stability and string stability, and such a dis- tinction has not been recognized in the literature, thus far. String stability is stability with respect to intervehicular spacing; intuitively, it ensures the knowledge of the position and velocity of every vehicle in the traffic, within reasonable bounds of error, from the knowledge of the position and velocity of a vehicle in the traffic. String stability is analyzed without adding vehicles to or removing vehicles from the traffic. On the other hand, traffic flow stability deals with the evolution of traffic velocity and density in response to the ad- dition and/or removal of vehicles from the flow. Traffic flow stability can be guaranteed only if the velocity and density solutions of the coupled set of equa- tions is stable, i.e., only if stability with respect to automatic vehicle following and stability with respect to density evolution is guaranteed. Therefore, the ow stability and critical capacity of any section of a highway is dependent not only on the vehicle following control laws and the information used in their synthesis, but also on the spacing policy employed by the control system. Such a dependence has practical consequences in the choice of a spacing policy for adaptive cruise control laws and on the stability of the traffic ow consisting of vehicles equipped with adaptive cruise control features on the existing and future highways. This critical dependence is the subject of investigation in this paper. This problem is analyzed in two steps: The first step is to understand the effect of spacing policy employed by the Intelligent Cruise Control (ICC) systems on traffic flow stability. The second step is to understand how the dynamics of ICC system affects traffic flow stability. Using such an analysis, it is shown that cruise control systems that employ a constant time headway policy lead to unacceptable characteristics for the traffic flows. Key Words: Intelligent Cruise Control Systems, Traffic Flow Stability, String Stability, Advanced Vehicle Control Systems, Advanced Traffic Management Systems.

10 citations

Journal ArticleDOI
TL;DR: In this article, the effect of prestressing the inclusion on the overall mechanical performance of composites having nonlinear viscoelastic constituents is investigated. And a recursive-iterative algorithm is used to numerically solve the governing equations which are integrated within a displacement-based finite element environment.

10 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigate the impact of material nonlinearity in the Euler-Bernoulli type beam theory and find that the governing equations for the deflection are nonlinear integro-differential equations, and the equations are solved numerically using a variant of the spectral collocation method.
Abstract: The response of many new metallic alloys as well as ordinary materials such as concrete is elastic and nonlinear even in the small strain range. Thus, using the classical linearized theory to determine the response of bodies could lead to a miscalculation of the stresses corresponding to the given strains, even in the small strain regime. As stresses can determine the failure of structural members, such miscalculation could be critical. We investigate the quantitative impact of the material nonlinearity in the Euler–Bernoulli type beam theory. The governing equations for the deflection are found to be nonlinear integro-differential equations, and the equations are solved numerically using a variant of the spectral collocation method. The deflection and the spatial stress distribution in the beam have been computed for two sets of models, namely the standard linearized model and some recent nonlinear models used in the literature to fit experimental data. The predictions concerning the deflection and the spatial stress distribution based on the standard linearized model and the nonlinear models are considerably different.

10 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors developed a constitutive law for the description of the (passive) mechanical response of arterial tissue, where the artery is modeled as a thick-walled nonlinearly elastic circular cylindrical tube consisting of two layers corresponding to the media and adventitia.
Abstract: In this paper we develop a new constitutive law for the description of the (passive) mechanical response of arterial tissue. The artery is modeled as a thick-walled nonlinearly elastic circular cylindrical tube consisting of two layers corresponding to the media and adventitia (the solid mechanically relevant layers in healthy tissue). Each layer is treated as a fiber-reinforced material with the fibers corresponding to the collagenous component of the material and symmetrically disposed with respect to the cylinder axis. The resulting constitutive law is orthotropic in each layer. Fiber orientations obtained from a statistical analysis of histological sections from each arterial layer are used. A specific form of the law, which requires only three material parameters for each layer, is used to study the response of an artery under combined axial extension, inflation and torsion. The characteristic and very important residual stress in an artery in vitro is accounted for by assuming that the natural (unstressed and unstrained) configuration of the material corresponds to an open sector of a tube, which is then closed by an initial bending to form a load-free, but stressed, circular cylindrical configuration prior to application of the extension, inflation and torsion. The effect of residual stress on the stress distribution through the deformed arterial wall in the physiological state is examined. The model is fitted to available data on arteries and its predictions are assessed for the considered combined loadings. It is explained how the new model is designed to avoid certain mechanical, mathematical and computational deficiencies evident in currently available phenomenological models. A critical review of these models is provided by way of background to the development of the new model.

2,887 citations

Journal ArticleDOI
TL;DR: In this paper, a simple model that satisfies most of these criteria uses depth-averaged equations of motion patterned after those of the Savage-Hutter theory for gravity-driven flow of dry granular masses but generalized to include the effects of viscous pore fluid with varying pressure.
Abstract: Recent advances in theory and experimen- tation motivate a thorough reassessment of the physics of debris flows. Analyses of flows of dry, granular solids and solid-fluid mixtures provide a foundation for a com- prehensive debris flow theory, and experiments provide data that reveal the strengths and limitations of theoret- ical models. Both debris flow materials and dry granular materials can sustain shear stresses while remaining stat- ic; both can deform in a slow, tranquil mode character- ized by enduring, frictional grain contacts; and both can flow in a more rapid, agitated mode characterized by brief, inelastic grain collisions. In debris flows, however, pore fluid that is highly viscous and nearly incompress- ible, composed of water with suspended silt and clay, can strongly mediate intergranular friction and collisions. Grain friction, grain collisions, and viscous fluid flow may transfer significant momentum simultaneously. Both the vibrational kinetic energy of solid grains (mea- sured by a quantity termed the granular temperature) and the pressure of the intervening pore fluid facilitate motion of grains past one another, thereby enhancing debris flow mobility. Granular temperature arises from conversion of flow translational energy to grain vibra- tional energy, a process that depends on shear rates, grain properties, boundary conditions, and the ambient fluid viscosity and pressure. Pore fluid pressures that exceed static equilibrium pressures result from local or global debris contraction. Like larger, natural debris flows, experimental debris flows of ;10 m 3 of poorly sorted, water-saturated sediment invariably move as an unsteady surge or series of surges. Measurements at the base of experimental flows show that coarse-grained surge fronts have little or no pore fluid pressure. In contrast, finer-grained, thoroughly saturated debris be- hind surge fronts is nearly liquefied by high pore pres- sure, which persists owing to the great compressibility and moderate permeability of the debris. Realistic mod- els of debris flows therefore require equations that sim- ulate inertial motion of surges in which high-resistance fronts dominated by solid forces impede the motion of low-resistance tails more strongly influenced by fluid forces. Furthermore, because debris flows characteristi- cally originate as nearly rigid sediment masses, trans- form at least partly to liquefied flows, and then trans- form again to nearly rigid deposits, acceptable models must simulate an evolution of material behavior without invoking preternatural changes in material properties. A simple model that satisfies most of these criteria uses depth-averaged equations of motion patterned after those of the Savage-Hutter theory for gravity-driven flow of dry granular masses but generalized to include the effects of viscous pore fluid with varying pressure. These equations can describe a spectrum of debris flow behav- iors intermediate between those of wet rock avalanches and sediment-laden water floods. With appropriate pore pressure distributions the equations yield numerical so- lutions that successfully predict unsteady, nonuniform motion of experimental debris flows.

2,426 citations

01 Mar 1987
TL;DR: The variable-order Adams method (SIVA/DIVA) package as discussed by the authors is a collection of subroutines for solution of non-stiff ODEs.
Abstract: Initial-value ordinary differential equation solution via variable order Adams method (SIVA/DIVA) package is collection of subroutines for solution of nonstiff ordinary differential equations. There are versions for single-precision and double-precision arithmetic. Requires fewer evaluations of derivatives than other variable-order Adams predictor/ corrector methods. Option for direct integration of second-order equations makes integration of trajectory problems significantly more efficient. Written in FORTRAN 77.

1,955 citations

Journal ArticleDOI
TL;DR: A structural continuum framework that is able to represent the dispersion of the collagen fibre orientation is developed and allows the development of a new hyperelastic free-energy function that is particularly suited for representing the anisotropic elastic properties of adventitial and intimal layers of arterial walls.
Abstract: Constitutive relations are fundamental to the solution of problems in continuum mechanics, and are required in the study of, for example, mechanically dominated clinical interventions involving soft biological tissues. Structural continuum constitutive models of arterial layers integrate information about the tissue morphology and therefore allow investigation of the interrelation between structure and function in response to mechanical loading. Collagen fibres are key ingredients in the structure of arteries. In the media (the middle layer of the artery wall) they are arranged in two helically distributed families with a small pitch and very little dispersion in their orientation (i.e. they are aligned quite close to the circumferential direction). By contrast, in the adventitial and intimal layers, the orientation of the collagen fibres is dispersed, as shown by polarized light microscopy of stained arterial tissue. As a result, continuum models that do not account for the dispersion are not able to capture accurately the stress–strain response of these layers. The purpose of this paper, therefore, is to develop a structural continuum framework that is able to represent the dispersion of the collagen fibre orientation. This then allows the development of a new hyperelastic free-energy function that is particularly suited for representing the anisotropic elastic properties of adventitial and intimal layers of arterial walls, and is a generalization of the fibre-reinforced structural model introduced by Holzapfel & Gasser (Holzapfel & Gasser 2001 Comput. Meth. Appl. Mech. Eng. 190, 4379–4403) and Holzapfel et al. (Holzapfel et al. 2000 J. Elast. 61, 1–48). The model incorporates an additional scalar structure parameter that characterizes the dispersed collagen orientation. An efficient finite element implementation of the model is then presented and numerical examples show that the dispersion of the orientation of collagen fibres in the adventitia of human iliac arteries has a significant effect on their mechanical response.

1,905 citations