scispace - formally typeset
Search or ask a question
Author

Kun Li

Bio: Kun Li is an academic researcher from Peking Union Medical College. The author has contributed to research in topics: Sperm & Sperm motility. The author has an hindex of 9, co-authored 22 publications receiving 274 citations. Previous affiliations of Kun Li include Wenzhou Medical College & Zhejiang University.

Papers
More filters
Journal ArticleDOI
TL;DR: CFTR is essential for human sperm fertilizing capacity and the impairment of CFTR expression in spermatozoa is correlated with a reduction of sperm quality, suggesting that defective expression ofCFTR in human sperm may lead to the reduction of semen fertilization capacity.
Abstract: methods: To assess the effect of CFTR on human sperm fertilizing capacity, we examined sperm capacitation and the acrosome reaction using chlortetracycline staining, analyzed sperm hyperactivation by computer-assisted semen analysis (CASA), measured intracellular cAMP levels using ElA and evaluated sperm penetration of zona-free hamster eggs assay in fertile men. The percentage of spermatozoa expressing CFTR from fertile, healthy and infertile men (mainly teratospermic, asthenoteratospermic, asthenospermic and oligospermic) was conducted by indirect immunofluorescence staining. results: Progesterone significantly facilitated human sperm capacitation and ZP3 triggered the acrosome reaction, both were significantly inhibited by CFTR inhibitor-172 (CFTRinh-172; 10 nM –1 mM) in a dose-dependent manner. The presence of 100 nM CFTRinh-172 markedly depressed intracellular cAMP levels, sperm hyperactivation and sperm penetration of zona-free hamster eggs. In addition, the percentage of spermatozoa expressing CFTR in the fertile men was significantly higher than healthy and infertile men categories (P , 0.01). conclusions: CFTR is essential for human sperm fertilizing capacity and the impairment of CFTR expression in spermatozoa is correlated with a reduction of sperm quality. These results suggest that defective expression of CFTR in human sperm may lead to the reduction of sperm fertilizing capacity.

62 citations

Journal ArticleDOI
TL;DR: It is proposed that OVS serve a role of packaging and delivering to sperm elevated levels of PMCA1 in Pmca4-/- during proestrus/estrus to compensate for PMCA4's absence.
Abstract: STUDY QUESTIONS Are extracellular vesicles (EVs) in the murine oviduct (oviductosomes, OVS) conserved in humans and do they play a role in the fertility of Pmca4-/- females? SUMMARY ANSWER OVS and their fertility-modulating proteins are conserved in humans, arise via the apocrine pathway, and mediate a compensatory upregulation of PMCA1 (plasma membrane Ca2+-ATPase 1) in Pmca4-/- female mice during proestrus/estrus, to account for their fertility. WHAT IS KNOWN ALREADY Recently murine OVS were identified and shown during proestrus/estrus to express elevated levels of PMCA4 which they can deliver to sperm. PMCA4 is the major Ca2+ efflux pump in murine sperm and Pmca4 deletion leads to loss of sperm motility and male infertility as there is no compensatory upregulation of the remaining Ca2+ pump, PMCA1. Of the four family members of PMCAs (PMCA1-4), PMCA1 and PMCA4 are ubiquitous, and to date there have been no reports of one isoform being upregulated to compensate for another in any organ/tissue. Since Pmca4-/- females are fertile, despite the abundant expression of PMCA4 in wild-type (WT) OVS, we propose that OVS serve a role of packaging and delivering to sperm elevated levels of PMCA1 in Pmca4-/- during proestrus/estrus to compensate for PMCA4's absence. STUDY DESIGN, SIZE, DURATION Fallopian tubes from pre-menopausal women undergoing hysterectomy were used to study EVs in the luminal fluid. Oviducts from sexually mature WT mice were sectioned after perfusion fixation to detect EVs in situ. Oviducts were recovered from WT and Pmca4-/- after hormonally induced estrus and sectioned for PMCA1 immunofluorescence (IF) (detected with confocal microscopy) and hematoxylin and eosin staining. Reproductive tissues, luminal fluids and EVs were recovered after induced estrus and after natural cycling for western blot analysis of PMCA1 and qRT-PCR of Pmca1 to compare expression levels in WT and Pmca4-/-. OVS, uterosomes, and epididymal luminal fluid were included in the comparisons. WT and Pmca4-/- OVS were analyzed for the presence of known PMCA4 partners in sperm and their ability to interact with PMCA1, via co-immunoprecipitation. In vitro uptake of PMCA1 from OVS was analyzed in capacitated and uncapacitated sperm via quantitative western blot analysis, IF localization and flow cytometry. Caudal sperm were also assayed for uptake of tyrosine-phosphorylated proteins which were shown to be present in OVS. Finally, PMCA1 and PMCA4 in OVS and that delivered to sperm were assayed for enzymatic activity. PARTICIPANTS/MATERIALS, SETTING, METHODS Human fallopian tubes were flushed to recover luminal fluid which was processed for OVS via ultracentrifugation. Human OVS were negatively stained for transmission electron microscopy (TEM) and subjected to immunogold labeling, to detect PMCA4. Western analysis was used to detect HSC70 (an EV biomarker), PMCA1 and endothelial nitric oxide synthase (eNOS) which is a fertility-modulating protein delivered to human sperm by prostasomes. Oviducts of sexually mature female mice were sectioned after perfusion fixation for TEM tomography to obtain 3D information and to distinguish cross-sections of EVs from those of microvilli and cilia. Murine tissues, luminal fluids and EVs were assayed for PMCA1 (IF and western blot) or qRT-PCR. PMCA1 levels from western blots were quantified, using band densities and compared in WT and Pmca4-/- after induced estrus and in proestrus/estrus and metestrus/diestrus in cycling females. In vitro uptake of PMCA1 and tyrosine-phosphorylated proteins was quantified with flow cytometry and/or quantitative western blot. Ca2+-ATPase activity in OVS and sperm before and after PMCA1 and PMCA4 uptake was assayed, via the enzymatic hydrolysis rate of ATP. MAIN RESULTS AND THE ROLE OF CHANCE TEM revealed that human oviducts contain EVs (exosomal and microvesicular). These EVs contain PMCA4 (immunolabeling), eNOS and PMCA1 (western blot) in their cargo. TEM tomography showed the murine oviduct with EV-containing blebs which typify the apocrine pathway for EV biogenesis. Western blots revealed that during proestrus/estrus PMCA1 was significantly elevated in the oviductal luminal fluid (OLF) (P = 0.02) and in OVS (P = 0.03) of Pmca4-/-, compared to WT. Further, while PMCA1 levels did not fluctuate in OLF during the cycle in WT, they were significantly (P = 0.02) higher in proestrus/estrus than at metestrus/diestrus in Pmca4-/-. The elevated levels of PMCA1 in proestrus/estrus, which mimics PMCA4 in WT, is OLF/OVS-specific, and is not seen in oviductal tissues, uterosomes or epididymal luminal fluid of Pmca4-/-. However, qRT-PCR revealed significantly elevated levels of Pmca1 transcript in Pmca4-/- oviductal tissues, compared to WT. PMCA1 could be transferred from OVS to sperm and the levels were significantly higher for capacitated vs uncapacitated sperm, as assessed by flow cytometry (P = 0.001) after 3 h co-incubation, quantitative western blot (P < 0.05) and the frequency of immuno-labeled sperm (P < 0.001) after 30 min co-incubation. Tyrosine phosphorylated proteins were discovered in murine OVS and could be delivered to sperm after their co-incubation with OVS, as detected by western, immunofluorescence localization, and flow cytometry. PMCA1 and PMCA4 in OVS were shown to be enzymatically active and this activity increased in sperm after OVS interaction. LARGE SCALE DATA None. LIMITATIONS REASONS FOR CAUTION Although oviductal tissues of WT and Pmca4-/- showed no significant difference in PMCA1 levels, Pmca4-/- levels of OVS/OLF during proestrus/estrus were significantly higher than in WT. We have attributed this enrichment or upregulation of PMCA1 in Pmca4-/- partly to selective packaging in OVS to compensate for the lack of PMCA4. However, in the absence of a difference between WT and Pmca4-/- in the PMCA1 levels in oviductal tissues as a whole, we cannot rule out significantly higher PMCA1 expression in the oviductal epithelium that gives rise to the OVS as significantly higher Pmca1 transcripts were detected in Pmca4-/-. WIDER IMPLICATIONS OF THE FINDINGS Since OVS and fertility-modulating cargo components are conserved in humans, it suggests that murine OVS role in regulating the expression of proteins required for capacitation and fertility is also conserved. Secondly, OVS may explain some of the differences in in vivo and in vitro fertilization for mouse mutants, as seen in mice lacking the gene for FER which is the enzyme required for sperm protein tyrosine phosphorylation. Our observation that murine OVS carry and can modulate sperm protein tyrosine phosphorylation by delivering them to sperm provides an explanation for the in vivo fertility of Fer mutants, not seen in vitro. Finally, our findings have implications for infertility treatment and exosome therapeutics. STUDY FUNDING AND COMPETING INTEREST(S) The work was supported by National Institute of Health (RO3HD073523 and 5P20RR015588) grants to P.A.M.-D. There are no conflicts of interests.

55 citations

Journal ArticleDOI
26 Dec 2014-PLOS ONE
TL;DR: Data suggest that heat shock protein 90, which increases in expression in human sperm during capacitation, has roles in intracellular calcium homeostasis, protein tyrosine phosphorylation regulation, and progesterone-stimulated sperm function.
Abstract: Heat shock protein 90 plays critical roles in client protein maturation, signal transduction, protein folding and degradation, and morphological evolution; however, its function in human sperm is not fully understood. Therefore, our objective in this study was to elucidate the mechanism by which heat shock protein 90 exerts its effects on human sperm function. By performing indirect immunofluorescence staining, we found that heat shock protein 90 was localized primarily in the neck, midpiece, and tail regions of human sperm, and that its expression increased with increasing incubation time under capacitation conditions. Geldanamycin, a specific inhibitor of heat shock protein 90, was shown to inhibit this increase in heat shock protein 90 expression in western blotting analyses. Using a multifunctional microplate reader to examine Fluo-3 AM-loaded sperm, we observed for the first time that inhibition of heat shock protein 90 by using geldanamycin significantly decreased intracellular calcium concentrations during capacitation. Moreover, western blot analysis showed that geldanamycin enhanced tyrosine phosphorylation of several proteins, including heat shock protein 90, in a dose-dependent manner. The effects of geldanamycin on human sperm function in the absence or presence of progesterone was evaluated by performing chlortetracycline staining and by using a computer-assisted sperm analyzer. We found that geldanamycin alone did not affect sperm capacitation, hyperactivation, and motility, but did so in the presence of progesterone. Taken together, these data suggest that heat shock protein 90, which increases in expression in human sperm during capacitation, has roles in intracellular calcium homeostasis, protein tyrosine phosphorylation regulation, and progesterone-stimulated sperm function. In this study, we provide new insights into the roles of heat shock protein 90 in sperm function.

51 citations

Journal ArticleDOI
TL;DR: This study demonstrates for the first time that, prior to reaching the zona pellucida, sperm may release a surface protein that acts on the cumulus cells leading to the acrosome reaction, which may be important for determining the outcome of fertilization.
Abstract: The acrosome reaction has long been thought to be induced by the zona pellucida. Here we report the identification and function of a novel human sperm glycosylphosphatidylinositol (GPI)-anchored membrane protein, NYD-SP8. The release of the protein during sperm-egg interaction and its binding to the cumulus, the first layer of egg investment, elicits cross-talk between the gametes and produces calcium dependant release of progesterone, which lead to the acrosome reaction. An in vivo mouse model of NYD-SP8 immunization is also established showing a reduced fertility rate. Thus, contrary to accepted dogma, our study demonstrates for the first time that, prior to reaching the zona pellucida, sperm may release a surface protein that acts on the cumulus cells leading to the acrosome reaction, which may be important for determining the outcome of fertilization.

45 citations

Journal ArticleDOI
Peibei Sun1, Yayan Wang1, Tian Gao1, Kun Li1, Dongwang Zheng1, Ajuan Liu1, Ya Ni1 
TL;DR: In this article, the authors explored whether heat shock protein 90 (Hsp90) modulates human sperm capacitation via the Erk1/2 and p38 MAPK signaling pathways and found that 17-allylamino-17-demethoxygeldanamycin (17-AAG) reduced the interaction between Hsp90 and Cdc37.
Abstract: Heat shock protein 90 (Hsp90) is a highly abundant eukaryotic molecular chaperone that plays important roles in client protein maturation, protein folding and degradation, and signal transduction Previously, we found that both Hsp90 and its co-chaperone cell division cycle protein 37 (Cdc37) were expressed in human sperm Hsp90 is known to be involved in human sperm capacitation via unknown underlying mechanism(s) As Cdc37 was a kinase-specific co-chaperone of Hsp90, Hsp90 may regulate human sperm capacitation via other kinases It has been reported that two major mitogen-activated protein kinases (MAPKs), extracellular signal-regulated kinase 1/2 (Erk1/2) and p38, are expressed in human sperm in the same locations as Hsp90 and Cdc37 Phosphorylated Erk1/2 has been shown to promote sperm hyperactivated motility and acrosome reaction, while phosphorylated p38 inhibits sperm motility Therefore, in this study we explored whether Hsp90 modulates human sperm capacitation via the Erk1/2 and p38 MAPK signaling pathways Human sperm was treated with the Hsp90-specific inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG) during capacitation Computer-assisted sperm analyzer (CASA) was used to detect sperm motility and hyperactivation The sperm acrosome reaction was analyzed by using fluorescein isothiocyanate-conjugated Pisum sativum agglutinin (PSA-FITC) staining The interactions between Hsp90, Cdc37, Erk1/2 and p38 were assessed using co-immunoprecipitation (Co-IP) experiments Western blotting analysis was used to evaluate the levels of protein expression and phosphorylation Human sperm hyperactivation and acrosome reaction were inhibited by 17-AAG, suggesting that Hsp90 is involved in human sperm capacitation In addition, Co-IP experiments revealed that 17-AAG reduced the interaction between Hsp90 and Cdc37, leading to the dissociation of Erk1/2 from the Hsp90-Cdc37 protein complex Western blotting analysis revealed that levels of Erk1/2 and its phosphorylated form were subsequently decreased Decreasing of Hsp90-Cdc37 complex also affected the interaction between Hsp90 and p38 Nevertheless, p38 dissociated from the Hsp90 protein complex and was activated by autophosphorylation Taken together, our findings indicate that Hsp90 is involved in human sperm hyperactivation and acrosome reaction In particular, Hsp90 and its co-chaperone Cdc37 form a protein complex with Erk1/2 and p38 to regulate their kinase activity These results suggest that Hsp90 regulates human sperm capacitation via the Erk1/2 and p38 MAPK signaling pathways

25 citations


Cited by
More filters
Journal ArticleDOI

692 citations

01 Jan 2009
TL;DR: In this article, a review outlines the current understanding of miRNA target recognition in animals and discusses the widespread impact of miRNAs on both the expression and evolution of protein-coding genes.
Abstract: MicroRNAs (miRNAs) are endogenous ∼23 nt RNAs that play important gene-regulatory roles in animals and plants by pairing to the mRNAs of protein-coding genes to direct their posttranscriptional repression. This review outlines the current understanding of miRNA target recognition in animals and discusses the widespread impact of miRNAs on both the expression and evolution of protein-coding genes.

646 citations

Journal ArticleDOI
TL;DR: Most fertilizing spermatozoa underwent the acrosome reaction before reaching the zona pellucida of cumulus-enclosed oocytes, at least under the experimental conditions the authors used.
Abstract: To fuse with oocytes, spermatozoa of eutherian mammals must pass through extracellular coats, the cumulus cell layer, and the zona pellucida (ZP). It is generally believed that the acrosome reaction (AR) of spermatozoa, essential for zona penetration and fusion with oocytes, is triggered by sperm contact with the zona pellucida. Therefore, in most previous studies of sperm–oocyte interactions in the mouse, the cumulus has been removed before insemination to facilitate the examination of sperm–zona interactions. We used transgenic mouse spermatozoa, which enabled us to detect the onset of the acrosome reaction using fluorescence microscopy. We found that the spermatozoa that began the acrosome reaction before reaching the zona were able to penetrate the zona and fused with the oocyte's plasma membrane. In fact, most fertilizing spermatozoa underwent the acrosome reaction before reaching the zona pellucida of cumulus-enclosed oocytes, at least under the experimental conditions we used. The incidence of in vitro fertilization of cumulus-free oocytes was increased by coincubating oocytes with cumulus cells, suggesting an important role for cumulus cells and their matrix in natural fertilization.

378 citations

Journal ArticleDOI
TL;DR: This review critically examines the involvement of Ca(2+) channels in multiple signaling processes needed for spermatozoa to mature, travel towards the egg, and fertilize it.
Abstract: A proper dialogue between spermatozoa and the egg is essential for conception of a new individual in sexually reproducing animals. Ca(2+) is crucial in orchestrating this unique event leading to a new life. No wonder that nature has devised different Ca(2+)-permeable channels and located them at distinct sites in spermatozoa so that they can help fertilize the egg. New tools to study sperm ionic currents, and image intracellular Ca(2+) with better spatial and temporal resolution even in swimming spermatozoa, are revealing how sperm ion channels participate in fertilization. This review critically examines the involvement of Ca(2+) channels in multiple signaling processes needed for spermatozoa to mature, travel towards the egg, and fertilize it. Remarkably, these tiny specialized cells can express exclusive channels like CatSper for Ca(2+) and SLO3 for K(+), which are attractive targets for contraception and for the discovery of novel signaling complexes. Learning more about fertilization is a matter of capital importance; societies face growing pressure to counteract rising male infertility rates, provide safe male gamete-based contraceptives, and preserve biodiversity through improved captive breeding and assisted conception initiatives.

301 citations

Journal ArticleDOI
TL;DR: EFET significantly decreases the risk of moderate and severe OHSS, albeit at the expense of an increased risk of pre-eclampsia, and the effectiveness of eFET in comparison to fresh embryo transfer in different subgroups of patients undergoing IVF/ICSI cycles is evaluated.
Abstract: Background Elective freezing of all good quality embryos and transfer in subsequent cycles, i.e. elective frozen embryo transfer (eFET), has recently increased significantly with the introduction of the GnRH agonist trigger protocol and improvements in cryo-techniques. The ongoing discussion focuses on whether eFET should be offered to the overall IVF population or only to specific subsets of patients. Until recently, the clinical usage of eFET was supported by only a few randomized controlled trials (RCT) and meta-analyses, suggesting that the eFET not only reduced ovarian hyperstimulation syndrome (OHSS), but also improved reproductive outcomes. However, the evidence is not unequivocal, and recent RCTs challenge the use of eFET for the general IVF population. Objective and rationale This systematic review and meta-analysis aimed at evaluating whether eFET is advantageous for reproductive, obstetric and perinatal outcomes compared with fresh embryo transfer in IVF/ICSI cycles. Additionally, we evaluated the effectiveness of eFET in comparison to fresh embryo transfer in different subgroups of patients undergoing IVF/ICSI cycles. Search methods We conducted a systematic review, using PubMed/Medline and EMBASE to identify all relevant RCTs published until March 2018. The participants included infertile couples undergoing IVF/ICSI with or without preimplantation genetic testing for aneuploidy (PGT-A). The primary outcome was the live birth rate (LBR), whereas secondary outcomes were cumulative LBR, implantation rate, miscarriage, OHSS, ectopic pregnancy, preterm birth, pregnancy-induced hypertension, pre-eclampsia, mean birthweight and congenital anomalies. Subgroup analyses included normal and hyper-responder patients, embryo developmental stage on the day of embryo transfer, freezing method and the route of progesterone administration for luteal phase support in eFET cycles. Outcomes Eleven studies, including 5379 patients, fulfilling the inclusion criteria were subjected to qualitative and quantitative analysis. A significant increase in LBR was noted with eFET compared with fresh embryo transfer in the overall IVF/ICSI population [risk ratio (RR) = 1.12; 95% CI: 1.01-1.24]. Subgroup analyses indicated higher LBRs by eFET than by fresh embryo transfer in hyper-responders (RR = 1.16; 95% CI: 1.05-1.28) and in PGT-A cycles (RR = 1.55; 95% CI: 1.14-2.10). However, no differences were observed for LBR in normo-responders (RR = 1.03; 95% CI: 0.91-1.17); moreover, the cumulative LBR was not significantly different in the overall population (RR = 1.04; 95% CI: 0.97-1.11). Regarding safety, the risk of moderate/severe OHSS was significantly lower with eFET than with fresh embryo transfer (RR = 0.42; 95% CI: 0.19-0.96). In contrast, the risk of pre-eclampsia increased with eFET (RR = 1.79; 95% CI: 1.03-3.09). No statistical differences were noted in the remaining secondary outcomes. Wider implications Although the use of eFET has steadily increased in recent years, a significant increase in LBR with eFET was solely noted in hyper-responders and in patients undergoing PGT-A. Concerning safety, eFET significantly decreases the risk of moderate and severe OHSS, albeit at the expense of an increased risk of pre-eclampsia.

286 citations