scispace - formally typeset
K

Kun-Liang Guan

Researcher at University of California, San Diego

Publications -  446
Citations -  109745

Kun-Liang Guan is an academic researcher from University of California, San Diego. The author has contributed to research in topics: Hippo signaling pathway & Signal transduction. The author has an hindex of 143, co-authored 427 publications receiving 94520 citations. Previous affiliations of Kun-Liang Guan include Purdue University & Chinese National Human Genome Center.

Papers
More filters
Journal ArticleDOI

AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1

TL;DR: A molecular mechanism for regulation of the mammalian autophagy-initiating kinase Ulk1, a homologue of yeast ATG1, is demonstrated and a signalling mechanism for UlK1 regulation and autophagic induction in response to nutrient signalling is revealed.
Journal ArticleDOI

Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

Daniel J. Klionsky, +2522 more
- 21 Jan 2016 - 
TL;DR: In this paper, the authors present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macro-autophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Journal ArticleDOI

Guidelines for the use and interpretation of assays for monitoring autophagy

Daniel J. Klionsky, +1287 more
- 01 Apr 2012 - 
TL;DR: These guidelines are presented for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Journal ArticleDOI

TSC2 mediates cellular energy response to control cell growth and survival.

TL;DR: It is described that TSC2 is regulated by cellular energy levels and plays an essential role in the cellular energy response pathway and its phosphorylation by AMPK protect cells from energy deprivation-induced apoptosis.
Journal ArticleDOI

TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling

TL;DR: It is shown that TSC1–TSC2 inhibits the p70 ribosomal protein S6 kinase 1 and activates the eukaryotic initiation factor 4E binding protein 1 (4E-BP1, an inhibitor of translational initiation) and these functions are mediated by inhibition of the mammalian target of rapamycin (mTOR).