scispace - formally typeset
Search or ask a question
Author

Kun Peng

Bio: Kun Peng is an academic researcher. The author has contributed to research in topics: Aryl & Glycosidic bond. The author has an hindex of 6, co-authored 7 publications receiving 170 citations.
Topics: Aryl, Glycosidic bond, Substituent, Alkoxy group

Papers
More filters
Journal ArticleDOI
TL;DR: S GLT2 inhibitors deuterated at sites susceptible to oxidative metabolism were found to have a slightly longer tmax and half-life, dose-dependent increase in urinary glucose excretion in rats, and slightly superior effects on UGE in dogs while retaining similar in vitro inhibitory activities against hSGLT2.
Abstract: SGLT2 inhibitors deuterated at sites susceptible to oxidative metabolism were found to have a slightly longer tmax and half-life (t1/2), dose-dependent increase in urinary glucose excretion (UGE) in rats, and slightly superior effects on UGE in dogs while retaining similar in vitro inhibitory activities against hSGLT2. In particular, deuterated compound 41 has the potential to be a robust long-acting antidiabetic agent.

56 citations

Journal ArticleDOI
TL;DR: The core spiro[isobenzofuran-1,2'-pyran] structure proved to be an effective scaffold for diversification and a number of compounds with single digit nanomolar potency and high selectivity have been synthesized.

42 citations

Journal ArticleDOI
TL;DR: Introduction of alkyl or alkoxy substituents at the 4'-position of the distal aryl ring was found to improve SGLT2 potency, whereas introduction of a hydrophilic group at this position was deleterious.

34 citations

Journal ArticleDOI
TL;DR: Introduction of an appropriate ortho substituent at the proximal phenyl ring adjacent to the glycosidic bond was found to improve SGLT2 inhibitory activity and dramatically increase selectivity for hS GLT2 over hSGLT1.

23 citations

Patent
15 Jul 2009
TL;DR: In this article, compounds having an inhibitory effect on sodium-dependent glucose cotransporter SGLT are provided. But they do not provide any methods of using these compounds, independently or in combination with other therapeutic agents, for treating diseases and conditions that are affected by sGLT inhibition.
Abstract: Provided are compounds having an inhibitory effect on sodium-dependent glucose cotransporter SGLT. The invention also provides pharmaceutical compositions, methods of preparing the compounds, synthetic intermediates, and methods of using the compounds, independently or in combination with other therapeutic agents, for treating diseases and conditions that are affected by SGLT inhibition.

14 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Advances in the application of hydrogen isotopes in the life sciences are described and 3 H, in particular, has seen an increase in utilization, especially in pharmaceutical drug discovery.
Abstract: Hydrogen isotopes are unique tools for identifying and understanding biological and chemical processes. Hydrogen isotope labelling allows for the traceless and direct incorporation of an additional mass or radioactive tag into an organic molecule with almost no changes in its chemical structure, physical properties, or biological activity. Using deuterium-labelled isotopologues to study the unique mass-spectrometric patterns generated from mixtures of biologically relevant molecules drastically simplifies analysis. Such methods are now providing unprecedented levels of insight in a wide and continuously growing range of applications in the life sciences and beyond. Tritium (3 H), in particular, has seen an increase in utilization, especially in pharmaceutical drug discovery. The efforts and costs associated with the synthesis of labelled compounds are more than compensated for by the enhanced molecular sensitivity during analysis and the high reliability of the data obtained. In this Review, advances in the application of hydrogen isotopes in the life sciences are described.

394 citations

Journal ArticleDOI
TL;DR: This Perspective provides an overview of the recent developments of deuteration, with a focus on deuterated clinical candidates, and highlights both opportunities and challenges of this strategy.
Abstract: The use of deuteration in medicinal chemistry has exploded in the past years, and the FDA has recently approved the first deuterium-labeled drug. Precision deuteration goes beyond the pure and simple amelioration of the pharmacokinetic parameters of a drug and might provide an opportunity when facing problems in terms of metabolism-mediated toxicity, drug interactions, and low bioactivation. The use of deuterium is even broader, offering the opportunity to lower the degree of epimerization, reduce the dose of coadministered boosters, and discover compounds where deuterium is the basis for the mechanism of action. Nevertheless, designing, synthesizing, and developing a successful deuterated drug is far from straightforward, and the translation from concept to practice is often unpredictable. This Perspective provides an overview of the recent developments of deuteration, with a focus on deuterated clinical candidates, and highlights both opportunities and challenges of this strategy.

341 citations

Journal ArticleDOI
TL;DR: This review offers a medium on which future drug design and development toward diabetes management may be modelled (i.e. optimization via structural derivatization), as many of the drug candidates highlighted show promise as an effective anti-diabetic chemotherapy.

200 citations

Journal ArticleDOI
TL;DR: This Review summarizes close to 500 primary publications and surveys published since 2000 about the syntheses and diverse bioactivities of C-glycopyranosyl (het)arenes displaying among others antioxidant, antiviral, antibiotic, antiadhesive, cytotoxic, and glycoenzyme inhibitory effects.
Abstract: This Review summarizes close to 500 primary publications and surveys published since 2000 about the syntheses and diverse bioactivities of C-glycopyranosyl (het)arenes. A classification of the preparative routes to these synthetic targets according to methodologies and compound categories is provided. Several of these compounds, regardless of their natural or synthetic origin, display antidiabetic properties due to enzyme inhibition (glycogen phosphorylase, protein tyrosine phosphatase 1B) or by inhibiting renal sodium-dependent glucose cotransporter 2 (SGLT2). The latter class of synthetic inhibitors, very recently approved as antihyperglycemic drugs, opens new perspectives in the pharmacological treatment of type 2 diabetes. Various compounds with the C-glycopyranosyl (het)arene motif were subjected to biological studies displaying among others antioxidant, antiviral, antibiotic, antiadhesive, cytotoxic, and glycoenzyme inhibitory effects.

151 citations

Journal ArticleDOI
TL;DR: A search of the Cambridge Structural Database using a series of pharmacophore queries led to the discovery of an O-spiroketal C-arylglucoside scaffold and chemical examination combined with computational modeling resulted in the identification of the clinical candidate 16d (CSG452, tofogliflozin), which is currently under phase III clinical trials.
Abstract: Inhibition of sodium glucose cotransporter 2 (SGLT2) has been proposed as a novel therapeutic approach to treat type 2 diabetes. In our efforts to discover novel inhibitors of SGLT2, we first generated a 3D pharmacophore model based on the superposition of known inhibitors. A search of the Cambridge Structural Database using a series of pharmacophore queries led to the discovery of an O-spiroketal C-arylglucoside scaffold. Subsequent chemical examination combined with computational modeling resulted in the identification of the clinical candidate 16d (CSG452, tofogliflozin), which is currently under phase III clinical trials.

137 citations