scispace - formally typeset
Search or ask a question
Author

Kun Zhang

Bio: Kun Zhang is an academic researcher from Chongqing University. The author has contributed to research in topics: Diffraction & Lens (optics). The author has an hindex of 12, co-authored 31 publications receiving 308 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A planar binary phase lens is proposed and the generation of a longitudinally polarized sub-diffraction focal spot is experimentally demonstrated by focusing radially polarized light.
Abstract: The generation of a sub-diffraction longitudinally polarized spot is of great interest in various applications, such as optical tweezers, super-resolution microscopy, high-resolution Raman spectroscopy, and high-density optical data storage. Many theoretical investigations have been conducted into the tight focusing of a longitudinally polarized spot with high-numerical-aperture aplanatic lenses in combination with optical filters. Optical super-oscillation provides a new approach to focusing light beyond the diffraction limit. Here, we propose a planar binary phase lens and experimentally demonstrate the generation of a longitudinally polarized sub-diffraction focal spot by focusing radially polarized light. The lens has a numerical aperture of 0.93 and a long focal length of 200λ for wavelength λ = 632.8 nm, and the generated focal spot has a full-width-at-half-maximum of about 0.456λ, which is smaller than the diffraction limit, 0.54λ. A 5λ-long longitudinally polarized optical needle with sub-diffraction size is also observed near the designed focal point.

66 citations

Journal ArticleDOI
TL;DR: The probiotic strain B. bifidum ATCC 29521 exhibited its probiotic role through its anti-inflammatory role by modulating miRNA-associated TJP and NF-κB regulation and by partially restoring dysbiosis in the DSS colitis mouse model.
Abstract: Probiotics are known to be beneficial in preventing different diseases in model animals, including inflammatory bowel disease. However, there are few studies on probiotics related to miRNA regulation and disease status. In this article, the beneficial role and mechanisms of the probiotic strain Bifidobacterium bifidum ATCC 29521 have been studied in ulcerative colitis using dextran sodium sulphate (DSS) model. Male C57JBL/6 mice were randomly divided into three groups (n=7): Normal group, dextran sulphate sodium (DSS) group, and Bifido group gavage with Bifidobacterium bifidum ATCC 29521 (2×108 CFU/day). Our strain restored the DSS-caused damage by regulating the expression of immune markers and tight junction proteins (TJP) in the colon; briefly by up-regulating ROS-scavenging enzymes (SOD1, SOD2, CAT, and GPX2), anti-inflammatory cytokines (IL-10, PPARγ, IL-6), TJP's (ZO-1, MUC-2, Claudin-3, and E Cadherin-1) and downregulating inflammatory genes (TNF-α, IL-1β) in Bifido group mice. Inflammatory markers appeared to be regulated by NF-κB nuclear P65 subunit, and its translocation was inhibited in Bifido group mice colon. In addition, the expression of inflammatory genes and colonic TJP were also associated with the restoration of miRNAs (miR-150, miR-155, miR-223) in B. bifidum ATCC 29521 treated Bifido group. The dysbiosis executed by DSS was restored in the Bifido group, demonstrating that B. bifidum ATCC 29521 possessed a probiotic role in our DSS colitis mouse model. B. bifidum ATCC 29521 exhibited its probiotic role through its anti-inflammatory role by modulating miRNA-associated TJP and NF-κB regulation and by partially restoring dysbiosis.

62 citations

Journal ArticleDOI
TL;DR: This work proposes a metalens based on an all-dielectric metasurface with a sub-wavelength unit size of 0.39λ for terahertz wave imaging and experimentally demonstrate its performance in focusing and imaging, and demonstrates the reversibility of the metalens for imaging.
Abstract: Terahertz wave imaging offers promising properties for non-destructive testing applications in the areas of homeland security, medicine, and industrial inspection. However, conventional optical lenses are heavy and bulky and difficult to integrate. An all-dielectric metasurface provides an attractive way to realize a planar lens of light weight that is ultrathin and offers ease of integration. Terahertz lenses based on various metasurfaces have been studied, especially for the application of wave focusing, while there are few experimental demonstrations of terahertz wave imaging lenses based on an all-dielectric metasurface. In the present work, we propose a metalens based on an all-dielectric metasurface with a sub-wavelength unit size of 0.39λ for terahertz wave imaging and experimentally demonstrate its performance in focusing and imaging. A large numerical aperture metalens was fabricated with a focal length of 300λ, radius of 300λ, and numerical aperture of 0.707. The experimental results show that the lens can focus THz waves with an incident angle up to 48°. More importantly, clear terahertz wave images of different objects were obtained for both different cases of forward- and inverse-incident directions, which demonstrate the reversibility of the metalens for imaging. Such a metalens provides a way for realization of all-planar-lens THz imaging system, and might find application in terahertz wave imaging, information processing, microscopy, and others.

46 citations

Journal ArticleDOI
TL;DR: A far-field sub-diffraction lens based on binary amplitude-phase mask was demonstrated under illumination of linearly polarized plane wave at wavelength 632.8 nm, which was super-oscillatory and has small sidelobes and wide field of view.
Abstract: Planar lenses are attractive photonic devices due to its minimized size and easy to integrate. However, planar lenses designed in traditional ways are restricted by the diffraction limit. They have difficulties in further reducing the focal spot size beyond the diffraction limit. Super-oscillation provides a possible way to solve the problem. However, lenses based on super-oscillation have always been affected by huge sidelobes, which resulted in limited field of view and difficulties in real applications. To address the problem, in the paper, a far-field sub-diffraction lens based on binary amplitude-phase mask was demonstrated under illumination of linearly polarized plane wave at wavelength 632.8 nm. The lens realized a long focal length of 148λ (94 µm), and the full width at half maximum of the focal line was 0.406λ, which was super-oscillatory. More important is that such a flat lens has small sidelobes and wide field of view. Within the measured range of [-132λ, + 120λ], the maximum sidelobe observed on the focal plane was less than 22% of the central peak. Such binary amplitude-phase planar lens can also be extended to long focal length far-field sub-diffraction focusing lens for other spectrum ranges.

40 citations

Journal ArticleDOI
TL;DR: A far-field sub-diffraction point-focusing lens based on binary phase and amplitude modulation with ultra-long focal length 252.8 μm and small numerical aperture with great potential applications in far- field super-resolution microscopy, ultra-high-density optical storage and nano-fabrication is reported.
Abstract: In traditional optics, the focal spot size of a conventional lens is restricted to the diffraction limit 0.5λ/NA, where λ is the wavelength in vacuum and NA is the numerical aperture of the lens. Recently, various sub-diffraction focusing optical devices have been demonstrated, but they usually have short focal length and high numerical aperture. Moreover, they always suffer the problem of huge sidelobes near the focal spot and small field of view, especially when the focal spot size is less than the super-oscillation criteria 0.38λ/NA. To address the problem, here, we reported a far-field sub-diffraction point-focusing lens based on binary phase and amplitude modulation with ultra-long focal length 252.8 μm (399.5λ) and small numerical aperture 0.78 and experimentally demonstrated a super-oscillatory focusing of circularly polarized light with spot size 287 nm (0.454λ), smaller than the diffraction limit 0.64λ and the super-oscillation criterion 0.487λ. What’s more, on the focal plane, in the measured area within the radius of 142λ, the largest sidelobe intensity is less than 26% of the central lobe intensity. Such ultra-long distance super-oscillatory focusing with small sidelobes and large field of view has great potential applications in far-field super-resolution microscopy, ultra-high-density optical storage and nano-fabrication.

39 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Super-oscillations are band-limited functions with the counterintuitive property that they can vary arbitrarily faster than their fastest Fourier component, over arbitrarily long intervals as discussed by the authors, which has implications for information theory and applications to optical vortices, sub-wavelength microscopy and related areas of nanoscience.
Abstract: Superoscillations are band-limited functions with the counterintuitive property that they can vary arbitrarily faster than their fastest Fourier component, over arbitrarily long intervals. Modern studies originated in quantum theory, but there were anticipations in radar and optics. The mathematical understanding—still being explored—recognises that functions are extremely small where they superoscillate; this has implications for information theory. Applications to optical vortices, sub-wavelength microscopy and related areas of nanoscience are now moving from the theoretical and the demonstrative to the practical. This Roadmap surveys all these areas, providing background, current research, and anticipating future developments.

127 citations

Journal ArticleDOI
TL;DR: The recent advances in planar diffractive lenses (PDLs) are reviewed from a united theoretical account on diffraction-based focusing optics, and the underlying physics of nanofocusing via constructive or destructive interference is revealed.
Abstract: Traditional objective lenses in modern microscopy, based on the refraction of light, are restricted by the Rayleigh diffraction limit. The existing methods to overcome this limit can be categorized into near-field (e.g., scanning near-field optical microscopy, superlens, microsphere lens) and far-field (e.g., stimulated emission depletion microscopy, photoactivated localization microscopy, stochastic optical reconstruction microscopy) approaches. However, they either operate in the challenging near-field mode or there is the need to label samples in biology. Recently, through manipulation of the diffraction of light with binary masks or gradient metasurfaces, some miniaturized and planar lenses have been reported with intriguing functionalities such as ultrahigh numerical aperture, large depth of focus, and subdiffraction-limit focusing in far-field, which provides a viable solution for the label-free superresolution imaging. Here, the recent advances in planar diffractive lenses (PDLs) are reviewed from a united theoretical account on diffraction-based focusing optics, and the underlying physics of nanofocusing via constructive or destructive interference is revealed. Various approaches of realizing PDLs are introduced in terms of their unique performances and interpreted by using optical aberration theory. Furthermore, a detailed tutorial about applying these planar lenses in nanoimaging is provided, followed by an outlook regarding future development toward practical applications.

107 citations

Journal ArticleDOI
TL;DR: How external factors such as dietary and physical activity habits influence host-microbiota and atherogenesis, the potential mechanisms of the influence of gut microbiota in host blood pressure and the alterations in the prevalence of those bacterial genera affecting vascular tone and the development of hypertension are discussed.
Abstract: The importance of gut microbiota in health and disease is being highlighted by numerous research groups worldwide. Atherosclerosis, the leading cause of heart disease and stroke, is responsible for about 50% of all cardiovascular deaths. Recently, gut dysbiosis has been identified as a remarkable factor to be considered in the pathogenesis of cardiovascular diseases (CVDs). In this review, we briefly discuss how external factors such as dietary and physical activity habits influence host-microbiota and atherogenesis, the potential mechanisms of the influence of gut microbiota in host blood pressure and the alterations in the prevalence of those bacterial genera affecting vascular tone and the development of hypertension. We will also be examining the microbiota as a therapeutic target in the prevention of CVDs and the beneficial mechanisms of probiotic administration related to cardiovascular risks. All these new insights might lead to novel analysis and CVD therapeutics based on the microbiota.

93 citations

Journal ArticleDOI
TL;DR: In this paper , the authors summarize the knowledge on cellular participants and key inflammatory signaling pathways in atherosclerosis, and discuss the preclinical studies targeting these key pathways, the clinical trials that are going to target some of these processes.
Abstract: Atherosclerosis is a chronic inflammatory vascular disease driven by traditional and nontraditional risk factors. Genome-wide association combined with clonal lineage tracing and clinical trials have demonstrated that innate and adaptive immune responses can promote or quell atherosclerosis. Several signaling pathways, that are associated with the inflammatory response, have been implicated within atherosclerosis such as NLRP3 inflammasome, toll-like receptors, proprotein convertase subtilisin/kexin type 9, Notch and Wnt signaling pathways, which are of importance for atherosclerosis development and regression. Targeting inflammatory pathways, especially the NLRP3 inflammasome pathway and its regulated inflammatory cytokine interleukin-1β, could represent an attractive new route for the treatment of atherosclerotic diseases. Herein, we summarize the knowledge on cellular participants and key inflammatory signaling pathways in atherosclerosis, and discuss the preclinical studies targeting these key pathways for atherosclerosis, the clinical trials that are going to target some of these processes, and the effects of quelling inflammation and atherosclerosis in the clinic.

89 citations

Journal ArticleDOI
TL;DR: Recent developments in optical ‘superoscillation’ technologies are reviewed, which aim to overcome current limitations in superresolution techniques requiring contact with the observed object, the use of fluorescent labels, or viewing that is restricted to the near-field of a lens.
Abstract: The resolution of conventional optical elements and systems has long been perceived to satisfy the classic Rayleigh criterion. Paramount efforts have been made to develop different types of superresolution techniques to achieve optical resolution down to several nanometres, such as by using evanescent waves, fluorescence labelling, and postprocessing. Superresolution imaging techniques, which are noncontact, far field and label free, are highly desirable but challenging to implement. The concept of superoscillation offers an alternative route to optical superresolution and enables the engineering of focal spots and point-spread functions of arbitrarily small size without theoretical limitations. This paper reviews recent developments in optical superoscillation technologies, design approaches, methods of characterizing superoscillatory optical fields, and applications in noncontact, far-field and label-free superresolution microscopy. This work may promote the wider adoption and application of optical superresolution across different wave types and application domains.

84 citations