scispace - formally typeset
Search or ask a question
Author

Kung C. Yeh

Bio: Kung C. Yeh is an academic researcher. The author has contributed to research in topics: Ion acoustic wave & Longitudinal wave. The author has an hindex of 1, co-authored 1 publications receiving 330 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors review the theory of acoustic-gravity waves, the interaction of such waves with the ionosphere, the experimental support for the existence of acoustic gravity waves in the upper atmosphere, and the role played by acoustic gravity wave in thermospheric dynamics.
Abstract: In this paper we review the theory of acoustic-gravity waves, the interaction of such waves with the ionosphere, the experimental support for the existence of such waves in the upper atmosphere, and the role played by acoustic-gravity waves in thermospheric dynamics. After a thorough discussion on the properties of acoustic-gravity waves in an ideal isothermal atmosphere, the effects produced by horizontal winds, sharp boundary discontinuities, and dissipative processes are discussed. The generation of these waves by stationary or moving sources is then treated. It is shown that the atmospheric response to a stationary impulse source can be described by the emission of three waves: acoustic, buoyancy, and gravity. These discussions are then followed by reviewing propagation effects in a realistic atmosphere for both free waves and guided waves. Recent numerical results are given. When acoustic-gravity waves propagate through the ionosphere, interaction between the wave and the ionosphere will take place. The physical processes involved in such an interaction are examined.

365 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A review of theoretical and observational results describing atmospheric gravity wave (AGW)/traveling ionospheric disturbance (TID) phenomena at high latitudes is presented in this paper.
Abstract: A review of theoretical and observational results describing atmospheric gravity wave (AGW)/traveling ionospheric disturbance (TID) phenomena at high latitudes is presented. Some recent experimental studies of AGW's using the Chatanika incoherent scatter radar and other geophysical sensors are reported. Specifically, the following features are described in detail: (1) cause/effect relations between aurorally generated AGW's and TID's detected at mid-latitudes, including probable ‘source signature’ identification, (2) AGW source phenomenology, particularly a semiquantitative assessment of the relative importance of Joule heating, Lorentz forces, intense particle precipitation, and other mechanisms in generating AGW's, and (3) detection of TID's in the auroral ionosphere. Several instances of F region electron density, temperature, and plasma periodicities accompanied by horizontal plasma velocities which were consistent with theoretical AGW/TID models are documented.

640 citations

Journal ArticleDOI
TL;DR: A review of recent advances in the understanding of gravity wave saturation in the middle atmosphere can be found in this article, where a brief discussion of the studies leading to the identification of the gravity wave effects and their role in middle atmosphere dynamics is presented.
Abstract: This paper provides a review of recent advances in our understanding of gravity wave saturation in the middle atmosphere. A brief discussion of those studies leading to the identification of gravity wave effects and their role in middle atmosphere dynamics is presented first. This is followed by a simple development of the linear saturation theory to illustrate the principal effects. Recent extensions to the linear saturation theory, including quasi-linear, nonlinear, and transient effects, are then described. Those studies addressing the role of gravity wave saturation in the mean circulation of the middle atmosphere are also discussed. Finally, observations of gravity wave motions, distribution, and variability and those measurements specifically addressing gravity wave saturation are reviewed.

575 citations

Journal ArticleDOI
Samuel H Francis1
TL;DR: The theoretical and observational evidence concerning the global propagation of atmospheric gravity waves is reviewed in this article, with special emphasis on the waves generated in the auroral zones, and it is concluded that the only natural sources of large-scale TIDs are in the ionospheric zones.

392 citations

Journal ArticleDOI
TL;DR: In this article, the authors show that although initiation by a gravity wave seems likely, the gravity wave interaction cannot yield the large displacements observed without further amplification by the Rayleigh-Taylor instability.
Abstract: Jicamarca radar backscatter maps were made during four consecutive nights in March 1979. Two of these maps displayed single towering plumes extending to nearly 1000-km altitude. On a third night, discussed in detail here, six plumes were generated in clear association with a nearly sinusoidal oscillation of the height of the bottomside of the F layer. The vertical amplitude of the oscillation was several hundred kilometers, and the period about 100 minutes. The plumes were generated either when the bottomside of the F layer was at the highest altitude or in the descending phase of the motion. Families of curves are presented which correspond to the solution of the dispersion relation for gravity waves capable of initiating the observed bottomside oscillations via the spatial resonance mechanism. We conclude that the solutions thus derived are reasonable and present a criterion for how well matched the gravity wave phase velocity and plasma drift have to be to produce a given perturbation in the ionization density. This criterion indicates that although initiation by a gravity wave seems likely, the gravity wave interaction cannot yield the large displacements observed without further amplification by the Rayleigh-Taylor instability. Finally, we show that the preferential generation of plumes during the descending phase of the F layer height oscillation can be explained by a generalized Rayleigh-Taylor instability operating on the distorted ionosphere with the destabilizing effects of gravity, a zonal electric field, and a zonal neutral wind included.

357 citations