scispace - formally typeset
Search or ask a question
Author

Kunjumon I. Vadakkan

Bio: Kunjumon I. Vadakkan is an academic researcher from University of Manitoba. The author has contributed to research in topics: Postsynaptic potential & Associative learning. The author has an hindex of 14, co-authored 43 publications receiving 1210 citations. Previous affiliations of Kunjumon I. Vadakkan include Dalhousie University & Sunnybrook Health Sciences Centre.

Papers
More filters
Journal ArticleDOI
TL;DR: It is reported that peripheral nerve injury triggered long-term changes in excitatory synaptic transmission in layer II/III neurons within the anterior cingulate cortex (ACC) and that AC1 is critical for such long- term changes.
Abstract: Neuropathic pain is caused by a primary lesion or dysfunction in the nervous system. Investigations have mainly focused on the spinal mechanisms of neuropathic pain, and less is known about cortical changes in neuropathic pain. Here, we report that peripheral nerve injury triggered long-term changes in excitatory synaptic transmission in layer II/III neurons within the anterior cingulate cortex (ACC). Both the presynaptic release probability of glutamate and postsynaptic glutamate AMPA receptor-mediated responses were enhanced after injury using the mouse peripheral nerve injury model. Western blot showed upregulated phosphorylation of GluR1 in the ACC after nerve injury. Finally, we found that both presynaptic and postsynaptic changes after nerve injury were absent in genetic mice lacking calcium-stimulated adenylyl cyclase 1 (AC1). Our studies therefore provide direct integrative evidence for both long-term presynaptic and postsynaptic changes in cortical synapses after nerve injury, and that AC1 is critical for such long-term changes. AC1 thus may serve as a potential therapeutic target for treating neuropathic pain.

312 citations

Journal ArticleDOI
TL;DR: The authors screened chemical compounds for inhibition of cyclic AMP production and of the transcription factor CREB in human cells transfected with adenylyl cyclase 1 and identified a lead candidate, NB001, which is relatively selective for AC1 over other adenylate cyclase isoforms.
Abstract: Neuropathic pain, often caused by nerve injury, is commonly observed among patients with different diseases. Because its basic mechanisms are poorly understood, effective medications are limited. Previous investigations of basic pain mechanisms and drug discovery efforts have focused mainly on early sensory neurons such as dorsal root ganglion and spinal dorsal horn neurons, and few synaptic-level studies or new drugs are designed to target the injury-related cortical plasticity that accompanies neuropathic pain. Our previous work has demonstrated that calcium-stimulated adenylyl cyclase 1 (AC1) is critical for nerve injury–induced synaptic changes in the anterior cingulate cortex. Through rational drug design and chemical screening, we have identified a lead candidate AC1 inhibitor, NB001, which is relatively selective for AC1 over other adenylate cyclase isoforms. Using a variety of behavioral tests and toxicity studies, we have found that NB001, when administered intraperitoneally or orally, has an analgesic effect in animal models of neuropathic pain, without any apparent side effects. Our study thus shows that AC1 could be a productive therapeutic target for neuropathic pain and describes a new agent for the possible treatment of neuropathic pain.

146 citations

Journal ArticleDOI
01 Jun 2007-Glia
TL;DR: The results provide strong evidence that P2Y receptor‐associated outward potassium channels and the phosphoinositide 3‐kinase pathway are important for ATP‐induced microglial motility in acute brain slices.
Abstract: Microglial cells are the resident macrophages that are involved in brain injuries and infections. Recent studies using transcranial two-photon microscopy have shown that ATP and P2Y receptors mediated rapid chemotactic responses of miroglia to local injury. However, the molecular mechanism for microglial chemotaxis toward ATP is still unknown. To address this question, we employed a combination of simultaneous perforated whole-cell recordings and time-lapse confocal imaging in GFP-labeled microglia in acute brain slices from adult mice. We found that ATP-induced rapid chemotaxis is correlated with P2Y receptor associated-outward potassium current in microglia. Activation of both P2Y receptor and its associated potassium channels are required for ATP-induced chemotaxis and baseline motility of microglial cells. The chemotaxis required the activation of phosphoinositide 3-kinase but not mitogen-activated protein kinase pathway. Our results provide strong evidence that P2Y receptor-associated outward potassium channels and the phosphoinositide 3-kinase pathway are important for ATP-induced microglial motility in acute brain slices.

135 citations

Journal ArticleDOI
TL;DR: It is demonstrated that glutamate and substance P, two principal mediators of sensory information between primary afferent fibers and the spinal cord, activate Erk in dorsal horn neurons of both adult rat and mouse spinal cord.
Abstract: The extracellular signal-regulated kinase (Erk) cascades are suggested to contribute to excitatory synaptic plasticity in the CNS, including the spinal cord dorsal horn. However, many of their upstream signaling pathways remain to be investigated. Here, we demonstrate that glutamate and substance P (SP), two principal mediators of sensory information between primary afferent fibers and the spinal cord, activate Erk in dorsal horn neurons of both adult rat and mouse spinal cord. In genetic knock-out mice of calcium calmodulin-stimulated adenylyl cyclase subtypes 1 (AC1) and 8 (AC8), activation of Erk in dorsal horn neurons were significantly reduced or blocked, either after peripheral tissue inflammation or by glutamate or SP in spinal cord slices. Our studies suggest that AC1 and AC8 act upstream from Erk activation in spinal dorsal horn neurons and the calcium-AC1/AC8-dependent Erk signaling pathways may contribute to spinal sensitization, an underlying mechanism for the development of persistent pain after injury.

129 citations

Journal ArticleDOI
TL;DR: The results show that ligation of the common peroneal nerve can be used as an efficacious mouse model for assessing behavioral nociceptive responses in neuropathic pain.

76 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: Current studies indicate that even in the normal brain, microglia have highly motile processes by which they scan their territorial domains, and microglial cells are considered the most susceptible sensors of brain pathology.
Abstract: Microglial cells are the resident macrophages in the central nervous system. These cells of mesodermal/mesenchymal origin migrate into all regions of the central nervous system, disseminate through the brain parenchyma, and acquire a specific ramified morphological phenotype termed "resting microglia." Recent studies indicate that even in the normal brain, microglia have highly motile processes by which they scan their territorial domains. By a large number of signaling pathways they can communicate with macroglial cells and neurons and with cells of the immune system. Likewise, microglial cells express receptors classically described for brain-specific communication such as neurotransmitter receptors and those first discovered as immune cell-specific such as for cytokines. Microglial cells are considered the most susceptible sensors of brain pathology. Upon any detection of signs for brain lesions or nervous system dysfunction, microglial cells undergo a complex, multistage activation process that converts them into the "activated microglial cell." This cell form has the capacity to release a large number of substances that can act detrimental or beneficial for the surrounding cells. Activated microglial cells can migrate to the site of injury, proliferate, and phagocytose cells and cellular compartments.

2,998 citations

Journal ArticleDOI
TL;DR: The major triggers that initiate and maintain central sensitization in healthy individuals in response to nociceptor input and in patients with inflammatory and neuropathic pain are reviewed, emphasizing the fundamental contribution and multiple mechanisms of synaptic plasticity caused by changes in the density, nature, and properties of ionotropic and metabotropic glutamate receptors.

2,803 citations

01 Jan 2010
TL;DR: In this paper, the authors describe a scenario where a group of people are attempting to find a solution to the problem of "finding the needle in a haystack" in the environment.
Abstract: 中枢神経系疾患の治療は正常細胞(ニューロン)の機能維持を目的とするが,脳血管障害のように機能障害の原因が細胞の死滅に基づくことは多い.一方,脳腫瘍の治療においては薬物療法や放射線療法といった腫瘍細胞の死滅を目標とするものが大きな位置を占める.いずれの場合にも,細胞死の機序を理解することは各種病態や治療法の理解のうえで重要である.現在のところ最も研究の進んでいる細胞死の型はアポトーシスである.そのなかで重要な位置を占めるミトコンドリアにおける反応および抗アポトーシス因子について概要を紹介する.

2,716 citations

Journal ArticleDOI
TL;DR: The accumulating evidence that chronic pain itself alters brain circuitry, including that involved in endogenous pain control, is examined, suggesting that controlling pain becomes increasingly difficult as pain becomes chronic.
Abstract: Chronic pain is one of the most prevalent health problems in our modern world, with millions of people debilitated by conditions such as back pain, headache and arthritis. To address this growing problem, many people are turning to mind-body therapies, including meditation, yoga and cognitive behavioural therapy. This article will review the neural mechanisms underlying the modulation of pain by cognitive and emotional states - important components of mind-body therapies. It will also examine the accumulating evidence that chronic pain itself alters brain circuitry, including that involved in endogenous pain control, suggesting that controlling pain becomes increasingly difficult as pain becomes chronic.

1,359 citations