scispace - formally typeset
Search or ask a question
Author

Kunzer Aaron R

Bio: Kunzer Aaron R is an academic researcher from AbbVie. The author has contributed to research in topics: Cancer & Small molecule. The author has an hindex of 17, co-authored 52 publications receiving 4708 citations. Previous affiliations of Kunzer Aaron R include Idun Pharmaceuticals & Walter and Eliza Hall Institute of Medical Research.


Papers
More filters
Journal ArticleDOI
02 Jun 2005-Nature
TL;DR: Mechanistic studies reveal that ABT-737 does not directly initiate the apoptotic process, but enhances the effects of death signals, displaying synergistic cytotoxicity with chemotherapeutics and radiation.
Abstract: Proteins in the Bcl-2 family are central regulators of programmed cell death, and members that inhibit apoptosis, such as Bcl-X(L) and Bcl-2, are overexpressed in many cancers and contribute to tumour initiation, progression and resistance to therapy. Bcl-X(L) expression correlates with chemo-resistance of tumour cell lines, and reductions in Bcl-2 increase sensitivity to anticancer drugs and enhance in vivo survival. The development of inhibitors of these proteins as potential anti-cancer therapeutics has been previously explored, but obtaining potent small-molecule inhibitors has proved difficult owing to the necessity of targeting a protein-protein interaction. Here, using nuclear magnetic resonance (NMR)-based screening, parallel synthesis and structure-based design, we have discovered ABT-737, a small-molecule inhibitor of the anti-apoptotic proteins Bcl-2, Bcl-X(L) and Bcl-w, with an affinity two to three orders of magnitude more potent than previously reported compounds. Mechanistic studies reveal that ABT-737 does not directly initiate the apoptotic process, but enhances the effects of death signals, displaying synergistic cytotoxicity with chemotherapeutics and radiation. ABT-737 exhibits single-agent-mechanism-based killing of cells from lymphoma and small-cell lung carcinoma lines, as well as primary patient-derived cells, and in animal models, ABT-737 improves survival, causes regression of established tumours, and produces cures in a high percentage of the mice.

3,279 citations

Journal ArticleDOI
TL;DR: Targeted modifications at three key positions of 1 resulted in a 20-fold improvement in the pharmacokinetic/pharmacodynamic relationship (PK/PD) between oral exposure (AUC) and in vitro efficacy in human tumor cell lines (EC 50).
Abstract: Overexpression of prosurvival proteins such as Bcl-2 and Bcl-X L has been correlated with tumorigenesis and resistance to chemotherapy, and thus, the development of antagonists of these proteins may provide a novel means for the treatment of cancer. We recently described the discovery of 1 (ABT-737), which binds Bcl-2, Bcl-X L, and Bcl-w with high affinity, shows robust antitumor activity in murine tumor xenograft models, but is not orally bioavailable. Herein, we report that targeted modifications at three key positions of 1 resulted in a 20-fold improvement in the pharmacokinetic/pharmacodynamic relationship (PK/PD) between oral exposure (AUC) and in vitro efficacy in human tumor cell lines (EC 50). The resulting compound, 2 (ABT-263), is orally efficacious in an established xenograft model of human small cell lung cancer, inducing complete tumor regressions in all animals. Compound 2 is currently in multiple phase 1 clinical trials in patients with small cell lung cancer and hematological malignancies.

314 citations

Journal ArticleDOI
TL;DR: Compound 2 demonstrated single agent efficacy against human follicular lymphoma cell lines that overexpress Bcl-2, and efficacy in a murine xenograft model of lymphoma when given both as a single agent and in combination with etoposide.
Abstract: Overexpression of the antiapototic proteins Bcl-2 and Bcl-xL provides a common mechanism through which cancer cells gain a survival advantage and become resistant to conventional chemotherapy. Inhibition of these prosurvival proteins is an attractive strategy for cancer therapy. We recently described the discovery of a selective Bcl-xL antagonist that potentiates the antitumor activity of chemotherapy and radiation. Here we describe the use of structure-guided design to exploit a deep hydrophobic binding pocket on the surface of these proteins to develop the first dual, subnanomolar inhibitors of Bcl-xL and Bcl-2. This study culminated in the identification of 2, which exhibited EC50 values of 8 nM and 30 nM in Bcl-2 and Bcl-xL dependent cells, respectively. Compound 2 demonstrated single agent efficacy against human follicular lymphoma cell lines that overexpress Bcl-2, and efficacy in a murine xenograft model of lymphoma when given both as a single agent and in combination with etoposide.

308 citations

Patent
15 Jan 2010
TL;DR: In this paper, compounds which inhibit the activity of anti-apoptotic Bcl-2 proteins, compositions containing the compounds and methods of treating diseases during which is expressed anti-APOPotic BCL-2 protein.
Abstract: Disclosed are compounds which inhibit the activity of anti-apoptotic Bcl-2 proteins, compositions containing the compounds and methods of treating diseases during which is expressed anti-apoptotic Bcl-2 protein.

175 citations

Journal ArticleDOI
TL;DR: Development of a rationally designed potentiator of cancer chemotherapy, via inhibition of Bcl-X(L) function, 73R, potentiates the activity of paclitaxel and UV irradiation in vitro and potentiated the antitumor efficacy of pac litaxel in a mouse xenograft model.
Abstract: Development of a rationally designed potentiator of cancer chemotherapy, via inhibition of Bcl-X(L) function, is described. Lead compounds generated by NMR screening and directed parallel synthesis displayed sub-microM binding but were strongly deactivated in the presence of serum. The dominant component of serum deactivation was identified as domain III of human serum albumin (HSA); NMR solution structures of inhibitors bound to both Bcl-X(L) and HSA domain III indicated two potential optimization sites for separation of affinities. Modifications at both sites resulted in compounds with improved Bcl-X(L) binding and greatly increased activity in the presence of human serum, culminating in 73R, which bound to Bcl-X(L) with a K(i) of 0.8 nM. In a cellular assay 73R reversed the protection afforded by Bcl-X(L) overexpression against cytokine deprivation in FL5.12 cells with an EC(50) of 0.47 microM. 73R showed little effect on the viability of the human non small cell lung cancer cell line A549. However, consistent with the proposed mechanism, 73R potentiated the activity of paclitaxel and UV irradiation in vitro and potentiated the antitumor efficacy of paclitaxel in a mouse xenograft model.

126 citations


Cited by
More filters
Journal ArticleDOI
Daniel J. Klionsky1, Kotb Abdelmohsen2, Akihisa Abe3, Joynal Abedin4  +2519 moreInstitutions (695)
TL;DR: In this paper, the authors present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macro-autophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure flux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation, it is imperative to target by gene knockout or RNA interference more than one autophagy-related protein. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways implying that not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular assays, we hope to encourage technical innovation in the field.

5,187 citations

Journal ArticleDOI
TL;DR: There are now unprecedented opportunities to understand and overcome drug resistance through the clinical assessment of rational therapeutic drug combinations and the use of predictive biomarkers to enable patient stratification.
Abstract: Resistance to chemotherapy and molecularly targeted therapies is a major problem facing current cancer research. The mechanisms of resistance to 'classical' cytotoxic chemotherapeutics and to therapies that are designed to be selective for specific molecular targets share many features, such as alterations in the drug target, activation of prosurvival pathways and ineffective induction of cell death. With the increasing arsenal of anticancer agents, improving preclinical models and the advent of powerful high-throughput screening techniques, there are now unprecedented opportunities to understand and overcome drug resistance through the clinical assessment of rational therapeutic drug combinations and the use of predictive biomarkers to enable patient stratification.

3,514 citations

Journal ArticleDOI
TL;DR: Once MMP has been induced, it causes the release of catabolic hydrolases and activators of such enzymes (including those of caspases) from mitochondria, meaning that mitochondria coordinate the late stage of cellular demise.
Abstract: Irrespective of the morphological features of end-stage cell death (that may be apoptotic, necrotic, autophagic, or mitotic), mitochondrial membrane permeabilization (MMP) is frequently the decisive event that delimits the frontier between survival and death. Thus mitochondrial membranes constitute the battleground on which opposing signals combat to seal the cell's fate. Local players that determine the propensity to MMP include the pro- and antiapoptotic members of the Bcl-2 family, proteins from the mitochondrialpermeability transition pore complex, as well as a plethora of interacting partners including mitochondrial lipids. Intermediate metabolites, redox processes, sphingolipids, ion gradients, transcription factors, as well as kinases and phosphatases link lethal and vital signals emanating from distinct subcellular compartments to mitochondria. Thus mitochondria integrate a variety of proapoptotic signals. Once MMP has been induced, it causes the release of catabolic hydrolases and activators of such enzymes (including those of caspases) from mitochondria. These catabolic enzymes as well as the cessation of the bioenergetic and redox functions of mitochondria finally lead to cell death, meaning that mitochondria coordinate the late stage of cellular demise. Pathological cell death induced by ischemia/reperfusion, intoxication with xenobiotics, neurodegenerative diseases, or viral infection also relies on MMP as a critical event. The inhibition of MMP constitutes an important strategy for the pharmaceutical prevention of unwarranted cell death. Conversely, induction of MMP in tumor cells constitutes the goal of anticancer chemotherapy.

3,340 citations

Journal ArticleDOI
TL;DR: The biochemical, structural and genetic studies that have clarified how the interplay between members of the BCL-2 family on mitochondria sets the apoptotic threshold are discussed, illuminating the physiological control of apoptosis, the pathological consequences of its dysregulation and the promising search for novel cancer therapies that target the BCA2 protein family.
Abstract: The BCL-2 protein family determines the commitment of cells to apoptosis, an ancient cell suicide programme that is essential for development, tissue homeostasis and immunity. Too little apoptosis can promote cancer and autoimmune diseases; too much apoptosis can augment ischaemic conditions and drive neurodegeneration. We discuss the biochemical, structural and genetic studies that have clarified how the interplay between members of the BCL-2 family on mitochondria sets the apoptotic threshold. These mechanistic insights into the functions of the BCL-2 family are illuminating the physiological control of apoptosis, the pathological consequences of its dysregulation and the promising search for novel cancer therapies that target the BCL-2 family.

2,446 citations