scispace - formally typeset
Search or ask a question
Author

Kurt Bürki

Other affiliations: Paul Ehrlich Institute
Bio: Kurt Bürki is an academic researcher from University of Zurich. The author has contributed to research in topics: Cytotoxic T cell & Antigen. The author has an hindex of 41, co-authored 66 publications receiving 14095 citations. Previous affiliations of Kurt Bürki include Paul Ehrlich Institute.


Papers
More filters
Journal ArticleDOI
05 May 1994-Nature
TL;DR: Perforin-deficient mice have been generated by homologous recombination to determine whether the effects of CDS+ cytolytic T cells and natural killer cells are mediated by pore formation involving perform, and perforin is therefore a key effector molecule for T-cell- and natural Killer- cell-mediated cy tolysis.
Abstract: Perforin-deficient mice have been generated by homologous recombination to determine whether the effects of CD8+ cytolytic T cells and natural killer cells are mediated by pore formation involving perforin. These mice are viable and fertile and have normal numbers of CD8+ T cells and natural killer cells which do not lyse virus-infected or allogeneic fibroblasts or natural killer target cells in vitro. The mice fail to clear lymphocytic choriomeningitis virus and they eliminate fibrosarcoma tumour cells with reduced efficiency. Perforin is therefore a key effector molecule for T-cell- and natural killer-cell-mediated cytolysis.

1,785 citations

Journal ArticleDOI
22 Jul 1994-Science
TL;DR: The perforin- and Fas-based mechanisms may account for all T cell-mediated cytotoxicity in short-term in vitro assays, and no third mechanism was detected.
Abstract: Two molecular mechanisms of T cell-mediated cytotoxicity, one perforin-based, the other Fas-based, have been demonstrated. To determine the extent of their contribution to T cell-mediated cytotoxicity, a range of effector cells from normal control or perforin-deficient mice were tested against a panel of target cells with various levels of Fas expression. All cytotoxicity observed was due to either of these mechanisms, and no third mechanism was detected. Thus, the perforin- and Fas-based mechanisms may account for all T cell-mediated cytotoxicity in short-term in vitro assays.

1,587 citations

Journal ArticleDOI
TL;DR: These mice resemble major features of AD pathology and suggest a central role of A beta in the pathogenesis of the disease.
Abstract: Mutations in the amyloid precursor protein (APP) gene cause early-onset familial Alzheimer disease (AD) by affecting the formation of the amyloid β (Aβ) peptide, the major constituent of AD plaques. We expressed human APP751 containing these mutations in the brains of transgenic mice. Two transgenic mouse lines develop pathological features reminiscent of AD. The degree of pathology depends on expression levels and specific mutations. A 2-fold overexpression of human APP with the Swedish double mutation at positions 670/671 combined with the V717I mutation causes Aβ deposition in neocortex and hippocampus of 18-month-old transgenic mice. The deposits are mostly of the diffuse type; however, some congophilic plaques can be detected. In mice with 7-fold overexpression of human APP harboring the Swedish mutation alone, typical plaques appear at 6 months, which increase with age and are Congo Red-positive at first detection. These congophilic plaques are accompanied by neuritic changes and dystrophic cholinergic fibers. Furthermore, inflammatory processes indicated by a massive glial reaction are apparent. Most notably, plaques are immunoreactive for hyperphosphorylated tau, reminiscent of early tau pathology. The immunoreactivity is exclusively found in congophilic senile plaques of both lines. In the higher expressing line, elevated tau phosphorylation can be demonstrated biochemically in 6-month-old animals and increases with age. These mice resemble major features of AD pathology and suggest a central role of Aβ in the pathogenesis of the disease.

1,497 citations

Journal ArticleDOI
09 Feb 1989-Nature
TL;DR: B-cell tolerance in transgenic mice using genes for IgM anti-H–2k MHC class I antibody is studied and it is suggested that very large numbers of autospecific B cells can be controlled by clonal deletion.
Abstract: B lymphocytes can be rendered specifically unresponsive to antigen by experimental manipulation in vivo and in vitro1–6, but it remains unclear whether or not natural tolerance involves B-cell tolerance because B cells are controlled by T lymphocytes, and in their absence respond poorly to antigen (reviewed in ref. 7). In addition, autoantibody-producing cells can be found in normal mice and their formation is enhanced by B-cell mitogens such as lipopolysaccharides8–12. We have studied B-cell tolerance in transgenic mice using genes for IgM anti-H–2k MHC class I antibody. In H–2d transgenic mice about 25–50% of the splenic B cells bear membrane immunoglobulin of this specificity, and abundant serum IgM encoded by the transgenes is produced. In contrast, H–2k x H–2d (H–2-d/k) transgenic mice lack B cells bearing the anti-H–2k idiotype and contain no detectable serum anti-H–2k antibody, suggesting that very large numbers of autospecific B cells can be controlled by clonal deletion.

1,010 citations

Journal ArticleDOI
30 Nov 1989-Nature
TL;DR: T-cell tolerance in transgenic mice expressing a T-cell receptor with double specificities for lymphocytic choriomeningitis virus (LCMV)-H-2Db and for the mixed-lymphocyte stimulatory (Mlsa) antigen is studied.
Abstract: The crucial role of the thymus in immunological tolerance has been demonstrated by establishing that T cells are positively selected to express a specificity for self major histocompatibility complex (MHC), and that those T cells bearing receptors potentially reactive to self antigen fragments, presumably presented by thymic MHC, are selected against. The precise mechanism by which tolerance is induced and the stage of T-cell development at which it occurs are not known. We have now studied T-cell tolerance in transgenic mice expressing a T-cell receptor with double specificities for lymphocytic choriomeningitis virus (LCMV)-H-2Db and for the mixed-lymphocyte stimulatory (MIsa) antigen. We report that alpha beta TCR transgenic mice tolerant to LCMV have drastically reduced numbers of CD4+CD8+ thymocytes and of peripheral T cells carrying the CD8 antigen. By contrast, tolerance to MIsa antigen in the same alpha beta TCR transgenic MIsa mice leads to deletion of only mature thymocytes and peripheral T cells and does not affect CD4+CD8+ thymocytes. Thus the same transgenic TCR-expressing T cells may be tolerized at different stages of their maturation and at different locations in the thymus depending on the antigen involved.

977 citations


Cited by
More filters
Journal ArticleDOI
24 May 2001-Nature
TL;DR: 21-nucleotide siRNA duplexes provide a new tool for studying gene function in mammalian cells and may eventually be used as gene-specific therapeutics.
Abstract: RNA interference (RNAi) is the process of sequence-specific, post-transcriptional gene silencing in animals and plants, initiated by double-stranded RNA (dsRNA) that is homologous in sequence to the silenced gene. The mediators of sequence-specific messenger RNA degradation are 21- and 22-nucleotide small interfering RNAs (siRNAs) generated by ribonuclease III cleavage from longer dsRNAs. Here we show that 21-nucleotide siRNA duplexes specifically suppress expression of endogenous and heterologous genes in different mammalian cell lines, including human embryonic kidney (293) and HeLa cells. Therefore, 21-nucleotide siRNA duplexes provide a new tool for studying gene function in mammalian cells and may eventually be used as gene-specific therapeutics.

10,451 citations

Journal ArticleDOI
10 Mar 1995-Science
TL;DR: In multicellular organisms, homeostasis is maintained through a balance between cell proliferation and cell death, and recent evidence suggests that alterations in cell survival contribute to the pathogenesis of a number of human diseases.
Abstract: In multicellular organisms, homeostasis is maintained through a balance between cell proliferation and cell death. Although much is known about the control of cell proliferation, less is known about the control of cell death. Physiologic cell death occurs primarily through an evolutionarily conserved form of cell suicide termed apoptosis. The decision of a cell to undergo apoptosis can be influenced by a wide variety of regulatory stimuli. Recent evidence suggests that alterations in cell survival contribute to the pathogenesis of a number of human diseases, including cancer, viral infections, autoimmune diseases, neurodegenerative disorders, and AIDS (acquired immunodeficiency syndrome). Treatments designed to specifically alter the apoptotic threshold may have the potential to change the natural progression of some of these diseases.

6,462 citations

Journal ArticleDOI
14 Oct 1999-Nature
TL;DR: It is shown that expression of CCR7, a chemokine receptor that controls homing to secondary lymphoid organs, divides human memory T cells into two functionally distinct subsets, which are named central memory (TCM) and effector memory (TEM).
Abstract: Naive T lymphocytes travel to T-cell areas of secondary lymphoid organs in search of antigen presented by dendritic cells. Once activated, they proliferate vigorously, generating effector cells that can migrate to B-cell areas or to inflamed tissues. A fraction of primed T lymphocytes persists as circulating memory cells that can confer protection and give, upon secondary challenge, a qualitatively different and quantitatively enhanced response. The nature of the cells that mediate the different facets of immunological memory remains unresolved. Here we show that expression of CCR7, a chemokine receptor that controls homing to secondary lymphoid organs, divides human memory T cells into two functionally distinct subsets. CCR7- memory cells express receptors for migration to inflamed tissues and display immediate effector function. In contrast, CCR7+ memory cells express lymph-node homing receptors and lack immediate effector function, but efficiently stimulate dendritic cells and differentiate into CCR7- effector cells upon secondary stimulation. The CCR7+ and CCR7- T cells, which we have named central memory (TCM) and effector memory (TEM), differentiate in a step-wise fashion from naive T cells, persist for years after immunization and allow a division of labour in the memory response.

5,537 citations

Journal ArticleDOI
TL;DR: The possibility that the immune system does not care about self and non-self, that its primary driving force is the need to detect and protect against danger, and that it does not do the job alone, but receives positive and negative communications from an extended network of other bodily tissues is discussed.
Abstract: For many years immunologists have been well served by the viewpoint that the immune system's primary goal is to discriminate between self and non-self. I believe that it is time to change viewpoints and, in this essay, I discuss the possibility that the immune system does not care about self and non-self, that its primary driving force is the need to detect and protect against danger, and that it does not do the job alone, but receives positive and negative communications from an extended network of other bodily tissues.

4,825 citations

Journal ArticleDOI
10 Mar 1995-Science
TL;DR: Fas ligand (FasL), a cell surface molecule belonging to the tumor necrosis factor family, binds to its receptor Fas, thus inducing apoptosis of Fas-bearing cells.
Abstract: Fas ligand (FasL), a cell surface molecule belonging to the tumor necrosis factor family, binds to its receptor Fas, thus inducing apoptosis of Fas-bearing cells. Various cells express Fas, whereas FasL is expressed predominantly in activated T cells. In the immune system, Fas and FasL are involved in down-regulation of immune reactions as well as in T cell-mediated cytotoxicity. Malfunction of the Fas system causes lymphoproliferative disorders and accelerates autoimmune diseases, whereas its exacerbation may cause tissue destruction.

4,190 citations