scispace - formally typeset
Search or ask a question
Author

Kurt E. Petersen

Other affiliations: CEPHEID, Seagate Technology, IBM  ...read more
Bio: Kurt E. Petersen is an academic researcher from Qualcomm. The author has contributed to research in topics: Wafer & Silicon. The author has an hindex of 52, co-authored 162 publications receiving 15634 citations. Previous affiliations of Kurt E. Petersen include CEPHEID & Seagate Technology.


Papers
More filters
Journal Article

[...]

TL;DR: In this article, the advantages of employing silicon as a mechanical material, the relevant mechanical characteristics of silicon, and the processing techniques which are specific to micromechanical structures are discussed.
Abstract: Single-crystal silicon is being increasingly employed in a variety of new commercial products not because of its well-established electronic properties, but rather because of its excellent mechanical properties. In addition, recent trends in the engineering literature indicate a growing interest in the use of silicon as a mechanical material with the ultimate goal of developing a broad range of inexpensive, batch-fabricated, high-performance sensors and transducers which are easily interfaced with the rapidly proliferating microprocessor. This review describes the advantages of employing silicon as a mechanical material, the relevant mechanical characteristics of silicon, and the processing techniques which are specific to micromechanical structures. Finally, the potentials of this new technology are illustrated by numerous detailed examples from the literature. It is clear that silicon will continue to be aggressively exploited in a wide variety of mechanical applications complementary to its traditional role as an electronic material. Furthermore, these multidisciplinary uses of silicon will significantly alter the way we think about all types of miniature mechanical devices and components.

2,707 citations

Journal ArticleDOI

[...]

01 May 1982
TL;DR: This review describes the advantages of employing silicon as a mechanical material, the relevant mechanical characteristics of silicon, and the processing techniques which are specific to micromechanical structures.
Abstract: Single-crystal silicon is being increasingly employed in a variety of new commercial products not because of its well-established electronic properties, but rather because of its excellent mechanical properties. In addition, recent trends in the engineering literature indicate a growing interest in the use of silicon as a mechanical material with the ultimate goal of developing a broad range of inexpensive, batch-fabricated, high-performance sensors and transducers which are easily interfaced with the rapidly proliferating microprocessor. This review describes the advantages of employing silicon as a mechanical material, the relevant mechanical characteristics of silicon, and the processing techniques which are specific to micromechanical structures. Finally, the potentials of this new technology are illustrated by numerous detailed examples from the literature. It is clear that silicon will continue to be aggressively exploited in a wide variety of mechanical applications complementary to its traditional role as an electronic material. Furthermore, these multidisciplinary uses of silicon will significantly alter the way we think about all types of miniature mechanical devices and components.

2,659 citations

Journal ArticleDOI

[...]

01 Aug 1998
TL;DR: In this article, the available etching methods fall into three categories in terms of the state of the etchant: wet, vapor, and plasma, and they are reviewed and compared by comparing the results, cost, complexity, process compatibility, and other factors.
Abstract: Bulk silicon etching techniques, used to selectively remove silicon from substrates, have been broadly applied in the fabrication of micromachined sensors, actuators, and structures. Despite the more recent emergence of higher resolution, surface-micromachining approaches, the majority of currently shipping silicon sensors are made using bulk etching. Particularly in light of newly introduced dry etching methods compatible with complementary metal-oxide-semiconductors, it is unlikely that bulk micromachining will decrease in popularity in the near future. The available etching methods fall into three categories in terms of the state of the etchant: wet, vapor, and plasma. For each category, the available processes are reviewed and compared in terms of etch results, cost, complexity, process compatibility, and a number of other factors. In addition, several example micromachined structures are presented.

759 citations

Journal ArticleDOI

[...]

Kurt E. Petersen1
TL;DR: In this paper, the authors describe fabrication procedures for constructing thin, electrostatically deflectable SiO 2 membranes on a silicon wafer in a very controllable manner, and three examples of typical applications for the micromechanical structures are discussed.
Abstract: New fabrication procedures ate described for constructing thin, electrostatically deflectable SiO 2 membranes on a silicon wafer in a very controllable manner. Performance parameters of these membranes are analyzed and three examples of typical applications for the micromechanical structures are discussed: a light modulator array, a micromechanical voltage-controlled switch, and the measurement of the mechanical properties of thin insulating films unconstrained by the substrate. Since the lifetimes of the membranes can be very long (>1010cycles), their dimensions very small (8.3 µm long, 950 A thick have been demonstrated), and the fabrication technique is simple and versatile, the potential applicability of such devices seems promising.

472 citations

Patent

[...]

24 Dec 1998
TL;DR: In this article, the authors present a continuous-flow analyte with a flow-through component and an elution flow path for carrying elution fluid through the component to release captured analyte from the component into the elution liquid.
Abstract: A cartridge (101) for separating a desired analyte from a fluid sample includes a sample port (103) and a sample flow path extending from the port through the body of the cartridge. The sample flow path includes at least one flow-through component (122), e.g., filter paper or a microfabricated chip, for capturing the desired analyte from the sample as the sample flows through the cartridge. The cartridge also includes an elution flow path for carrying elution fluid through the component (122) to release captured analyte from the component into the elution fluid. The elution flow path diverges from the sample flow path after passing through the component (122). Flow controllers (41A and 41B) direct the remaining fluid sample into a waste chamber (139) after the sample flows through the component (122) and direct the elution fluid and eluted analyte into a reagent chamber (141) and reaction chamber (143). The continuous-flow design of the cartridge permits the rapid processing of a fluid sample that is larger in volume than any interactive region within the cartridge, allowing increased sensitivity in the detection of low copy concentrations of analytes, such as nucleic acid.

435 citations


Cited by
More filters
Journal ArticleDOI

[...]

TL;DR: The atomic force microscope as mentioned in this paper is a combination of the principles of the scanning tunneling microscope and the stylus profilometer, which was proposed as a method to measure forces as small as 10-18 N. As one application for this concept, they introduce a new type of microscope capable of investigating surfaces of insulators on an atomic scale.
Abstract: The scanning tunneling microscope is proposed as a method to measure forces as small as 10-18 N. As one application for this concept, we introduce a new type of microscope capable of investigating surfaces of insulators on an atomic scale. The atomic force microscope is a combination of the principles of the scanning tunneling microscope and the stylus profilometer. It incorporates a probe that does not damage the surface. Our preliminary results in air demonstrate a lateral resolution of 30 A and a vertical resolution less than 1 A.

11,795 citations

Journal ArticleDOI

[...]

TL;DR: A procedure that makes it possible to design and fabricate microfluidic systems in an elastomeric material poly(dimethylsiloxane) (PDMS) in less than 24 h by fabricating a miniaturized capillary electrophoresis system is described.
Abstract: This paper describes a procedure that makes it possible to design and fabricate (including sealing) microfluidic systems in an elastomeric materialpoly(dimethylsiloxane) (PDMS)in less than 24 h. A network of microfluidic channels (with width >20 μm) is designed in a CAD program. This design is converted into a transparency by a high-resolution printer; this transparency is used as a mask in photolithography to create a master in positive relief photoresist. PDMS cast against the master yields a polymeric replica containing a network of channels. The surface of this replica, and that of a flat slab of PDMS, are oxidized in an oxygen plasma. These oxidized surfaces seal tightly and irreversibly when brought into conformal contact. Oxidized PDMS also seals irreversibly to other materials used in microfluidic systems, such as glass, silicon, silicon oxide, and oxidized polystyrene; a number of substrates for devices are, therefore, practical options. Oxidation of the PDMS has the additional advantage that it ...

5,257 citations

Book

[...]

01 Jan 2001
TL;DR: In this paper, the authors present a general framework for coupling matrix for Coupled Resonator Filters with short-circuited Stubs (UWB) and Cascaded Quadruplet (CQ) filters.
Abstract: Preface to the Second Edition. Preface to the First Edition. 1 Introduction. 2 Network Analysis. 2.1 Network Variables. 2.2 Scattering Parameters. 2.3 Short-Circuit Admittance Parameters. 2.4 Open-Circuit Impedance Parameters. 2.5 ABCD Parameters. 2.6 Transmission-Line Networks. 2.7 Network Connections. 2.8 Network Parameter Conversions. 2.9 Symmetrical Network Analysis. 2.10 Multiport Networks. 2.11 Equivalent and Dual Network. 2.12 Multimode Networks. 3 Basic Concepts and Theories of Filters. 3.1 Transfer Functions. 3.2 Lowpass Prototype Filters and Elements. 3.3 Frequency and Element Transformations. 3.4 Immittance Inverters. 3.5 Richards' Transformation and Kuroda Identities. 3.6 Dissipation and Unloaded Quality Factor. 4 Transmission Lines and Components. 4.1 Microstrip Lines. 4.2 Coupled Lines. 4.3 Discontinuities and Components. 4.4 Other Types of Microstrip Lines. 4.5 Coplanar Waveguide (CPW). 4.6 Slotlines. 5 Lowpass and Bandpass Filters. 5.1 Lowpass Filters. 5.2 Bandpass Filters. 6 Highpass and Bandstop Filters. 6.1 Highpass Filters. 6.2 Bandstop Filters. 7 Coupled-Resonator Circuits. 7.1 General Coupling Matrix for Coupled-Resonator Filters. 7.2 General Theory of Couplings. 7.3 General Formulation for Extracting Coupling Coefficient k. 7.4 Formulation for Extracting External Quality Factor Qe. 7.5 Numerical Examples. 7.6 General Coupling Matrix Including Source and Load. 8 CAD for Low-Cost and High-Volume Production. 8.1 Computer-Aided Design (CAD) Tools. 8.2 Computer-Aided Analysis (CAA). 8.3 Filter Synthesis by Optimization. 8.4 CAD Examples. 9 Advanced RF/Microwave Filters. 9.1 Selective Filters with a Single Pair of Transmission Zeros. 9.2 Cascaded Quadruplet (CQ) Filters. 9.3 Trisection and Cascaded Trisection (CT) Filters. 9.4 Advanced Filters with Transmission-Line Inserted Inverters. 9.5 Linear-Phase Filters. 9.6 Extracted Pole Filters. 9.7 Canonical Filters. 9.8 Multiband Filters. 10 Compact Filters and Filter Miniaturization. 10.1 Miniature Open-Loop and Hairpin Resonator Filters. 10.2 Slow-Wave Resonator Filters. 10.3 Miniature Dual-Mode Resonator Filters. 10.4 Lumped-Element Filters. 10.5 Miniature Filters Using High Dielectric-Constant Substrates. 10.6 Multilayer Filters. 11 Superconducting Filters. 11.1 High-Temperature Superconducting (HTS) Materials. 11.2 HTS Filters for Mobile Communications. 11.3 HTS Filters for Satellite Communications. 11.4 HTS Filters for Radio Astronomy and Radar. 11.5 High-Power HTS Filters. 11.6 Cryogenic Package. 12 Ultra-Wideband (UWB) Filters. 12.1 UWB Filters with Short-Circuited Stubs. 12.2 UWB-Coupled Resonator Filters. 12.3 Quasilumped Element UWB Filters. 12.4 UWB Filters Using Cascaded Miniature High- And Lowpass Filters. 12.5 UWB Filters with Notch Band(s). 13 Tunable and Reconfigurable Filters. 13.1 Tunable Combline Filters. 13.2 Tunable Open-Loop Filters without Via-Hole Grounding. 13.3 Reconfigurable Dual-Mode Bandpass Filters. 13.4 Wideband Filters with Reconfigurable Bandwidth. 13.5 Reconfigurable UWB Filters. 13.6 RF MEMS Reconfigurable Filters. 13.7 Piezoelectric Transducer Tunable Filters. 13.8 Ferroelectric Tunable Filters. Appendix: Useful Constants and Data. A.1 Physical Constants. A.2 Conductivity of Metals at 25 C (298K). A.3 Electical Resistivity rho in 10-8 m of Metals. A.4 Properties of Dielectric Substrates. Index.

4,365 citations

Journal Article

[...]

TL;DR: In this article, the advantages of employing silicon as a mechanical material, the relevant mechanical characteristics of silicon, and the processing techniques which are specific to micromechanical structures are discussed.
Abstract: Single-crystal silicon is being increasingly employed in a variety of new commercial products not because of its well-established electronic properties, but rather because of its excellent mechanical properties. In addition, recent trends in the engineering literature indicate a growing interest in the use of silicon as a mechanical material with the ultimate goal of developing a broad range of inexpensive, batch-fabricated, high-performance sensors and transducers which are easily interfaced with the rapidly proliferating microprocessor. This review describes the advantages of employing silicon as a mechanical material, the relevant mechanical characteristics of silicon, and the processing techniques which are specific to micromechanical structures. Finally, the potentials of this new technology are illustrated by numerous detailed examples from the literature. It is clear that silicon will continue to be aggressively exploited in a wide variety of mechanical applications complementary to its traditional role as an electronic material. Furthermore, these multidisciplinary uses of silicon will significantly alter the way we think about all types of miniature mechanical devices and components.

2,707 citations

Journal ArticleDOI

[...]

01 May 1982
TL;DR: This review describes the advantages of employing silicon as a mechanical material, the relevant mechanical characteristics of silicon, and the processing techniques which are specific to micromechanical structures.
Abstract: Single-crystal silicon is being increasingly employed in a variety of new commercial products not because of its well-established electronic properties, but rather because of its excellent mechanical properties. In addition, recent trends in the engineering literature indicate a growing interest in the use of silicon as a mechanical material with the ultimate goal of developing a broad range of inexpensive, batch-fabricated, high-performance sensors and transducers which are easily interfaced with the rapidly proliferating microprocessor. This review describes the advantages of employing silicon as a mechanical material, the relevant mechanical characteristics of silicon, and the processing techniques which are specific to micromechanical structures. Finally, the potentials of this new technology are illustrated by numerous detailed examples from the literature. It is clear that silicon will continue to be aggressively exploited in a wide variety of mechanical applications complementary to its traditional role as an electronic material. Furthermore, these multidisciplinary uses of silicon will significantly alter the way we think about all types of miniature mechanical devices and components.

2,659 citations