scispace - formally typeset
Search or ask a question
Author

Kurt E. Shuler

Bio: Kurt E. Shuler is an academic researcher from University of California, San Diego. The author has contributed to research in topics: Random walk & Nonlinear system. The author has an hindex of 25, co-authored 53 publications receiving 3592 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the sensitivity of the solutions of large sets of coupled nonlinear rate equations to uncertainties in the rate coefficients is investigated, and it is shown via an application of Weyl's ergodic theorem that a subset of the Fourier coefficients is related to ∂ci/∂kl ǫ, the rate of change of the concentration of species i with respect to the rate constant for reaction l averaged over the uncertainties of all the other rate coefficients.
Abstract: A method has been developed to investigate the sensitivity of the solutions of large sets of coupled nonlinear rate equations to uncertainties in the rate coefficients. This method is based on varying all the rate coefficients simultaneously through the introduction of a parameter in such a way that the output concentrations become periodic functions of this parameter at any given time t. The concentrations of the chemical species are then Fourier analyzed at time t. We show via an application of Weyl's ergodic theorem that a subset of the Fourier coefficients is related to 〈∂ci/∂kl〉, the rate of change of the concentration of species i with respect to the rate constant for reaction l averaged over the uncertainties of all the other rate coefficients. Thus a large Fourier coefficient corresponds to a large sensitivity, and a small Fourier coefficient corresponds to a small sensitivity. The amount of numerical integration required to calculate these Fourier coefficients is considerably less than that requi...

954 citations

Journal ArticleDOI
TL;DR: In this article, the sensitivity analysis presented in this paper is nonlinear and thus permits one to study the effects of large deviations from the nominal parameter values, and since all parameters are varied simultaneously, one can explore regions of parameter space where several parameters deviate simultaneously from their nominal values.

642 citations

Journal ArticleDOI
TL;DR: In this article, the authors developed a new method of sensitivity analysis for large sets of coupled nonlinear equations with many parameters and developed rigorous error bounds for these approximations, where applicable, they showed that the techniques developed in this series of papers provide a useful and efficient method for sensitivity analysis of large systems with multiple parameters.
Abstract: In Parts I and II of this series [J. Chem. Phys. 59, 3873, 3879 (1973)] we developed a new method of sensitivity analysis for large sets of coupled nonlinear equations with many parameters. In developing this theory and in carrying out the computer calculations involved in this analysis we made a number of approximations. We present here a quantitative analysis of these approximations and, where applicable, develop rigorous error bounds. Our analysis shows that we can specify the approximations which enter into our theory so as to obtain sensitivity measures of known accuracy. On this basis we feel that the techniques developed in this series of papers provide a useful and efficient method of sensitivity analysis of large systems with many parameters.

320 citations

Journal ArticleDOI
TL;DR: In this article, the effects of the change of the (geometrical) configuration of the intermediate reaction complex during reaction and of the electronic vibrational coupling on these correlations have been considered in detail.
Abstract: Adiabatic orbital and spin correlation rules applicable to a detailed study of elementary chemical reactions involving nonlinear polyatomic intermediate complexes have been formulated and are presented together with some pertinent correlation tables. These correlation rules and tables permit the determination of the adiabatically allowed term manifold of reaction products from the states of the separated reactants without reference to their detailed electronic configurations. The formulation presented here utilizes group theoretical arguments relating to the symmetry properties of the reactants, the intermediate reaction complex, and the products and is based principally upon the results obtained previously by Mulliken for the resolution of species into those of point groups of lower symmetry. The effects of the change of the (geometrical) configuration of the intermediate reaction complex during reaction and of the electronic‐vibrational coupling on these correlations have been considered in detail. It i...

202 citations

Journal ArticleDOI
TL;DR: In this paper, the sensitivity analysis presented in this paper is nonlinear and thus permits one to study the effects of large deviations from the nominal parameter values, and since all parameters are varied simultaneously, one can explore regions of parameter space where several parameters deviate simultaneously from their nominal values.
Abstract: Large sets of coupled, nonlinear equations arise in a number of disciplines in connection with computer-based models of physical, social, and economic processes. Solutions for such large systems of equations must be effected by means of digital computers using appropriately designed codes. This paper addresses itself to the critically important problem of how sensitive the solutions are to variations of, or inherent uncertainties in, the parameters of the equation set. We review here, and also present further developments of, our statistical method of sensitivity analysis. The sensitivity analysis presented here is nonlinear and thus permits one to study the effects of large deviations from the nominal parameter values. In addition, since all parameters are varied simultaneously, one can explore regions of parameter space where several parameters deviate simultaneously from their nominal values. We develop here the theory of our method of sensitivity analysis, then detail the method of implementation, and finally present examples of its use.

169 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Fractional kinetic equations of the diffusion, diffusion-advection, and Fokker-Planck type are presented as a useful approach for the description of transport dynamics in complex systems which are governed by anomalous diffusion and non-exponential relaxation patterns.

7,412 citations

Journal ArticleDOI
TL;DR: In this paper, an exact method is presented for numerically calculating, within the framework of the stochastic formulation of chemical kinetics, the time evolution of any spatially homogeneous mixture of molecular species which interreact through a specified set of coupled chemical reaction channels.

5,875 citations

Journal ArticleDOI
TL;DR: In this article, global sensitivity indices for rather complex mathematical models can be efficiently computed by Monte Carlo (or quasi-Monte Carlo) methods, which are used for estimating the influence of individual variables or groups of variables on the model output.

3,921 citations

Book
01 Apr 2004
TL;DR: In this paper, the authors present a method for sensitivity analysis of a fish population model using Monte Carlo filtering and variance-based methods, which is based on the Bayesian uncertainty estimation.
Abstract: PREFACE. 1. A WORKED EXAMPLE. 1.1 A simple model. 1.2 Modulus version of the simple model. 1.3 Six--factor version of the simple model. 1.4 The simple model 'by groups'. 1.5 The (less) simple correlated--input model. 1.6 Conclusions. 2. GLOBAL SENSITIVITY ANALYSIS FOR IMPORTANCE ASSESSMENT. 2.1 Examples at a glance. 2.2 What is sensitivity analysis? 2.3 Properties of an ideal sensitivity analysis method. 2.4 Defensible settings for sensitivity analysis. 2.5 Caveats. 3. TEST CASES. 3.1 The jumping man. Applying variance--based methods. 3.2 Handling the risk of a financial portfolio: the problem of hedging. Applying Monte Carlo filtering and variance--based methods. 3.3 A model of fish population dynamics. Applying the method of Morris. 3.4 The Level E model. Radionuclide migration in the geosphere. Applying variance--based methods and Monte Carlo filtering. 3.5 Two spheres. Applying variance based methods in estimation/calibration problems. 3.6 A chemical experiment. Applying variance based methods in estimation/calibration problems. 3.7 An analytical example. Applying the method of Morris. 4. THE SCREENING EXERCISE. 4.1 Introduction. 4.2 The method of Morris. 4.3 Implementing the method. 4.4 Putting the method to work: an analytical example. 4.5 Putting the method to work: sensitivity analysis of a fish population model. 4.6 Conclusions. 5. METHODS BASED ON DECOMPOSING THE VARIANCE OF THE OUTPUT. 5.1 The settings. 5.2 Factors Prioritisation Setting. 5.3 First--order effects and interactions. 5.4 Application of Si to Setting 'Factors Prioritisation'. 5.5 More on variance decompositions. 5.6 Factors Fixing (FF) Setting. 5.7 Variance Cutting (VC) Setting. 5.8 Properties of the variance based methods. 5.9 How to compute the sensitivity indices: the case of orthogonal input. 5.9.1 A digression on the Fourier Amplitude Sensitivity Test (FAST). 5.10 How to compute the sensitivity indices: the case of non--orthogonal input. 5.11 Putting the method to work: the Level E model. 5.11.1 Case of orthogonal input factors. 5.11.2 Case of correlated input factors. 5.12 Putting the method to work: the bungee jumping model. 5.13 Caveats. 6. SENSITIVITY ANALYSIS IN DIAGNOSTIC MODELLING: MONTE CARLO FILTERING AND REGIONALISED SENSITIVITY ANALYSIS, BAYESIAN UNCERTAINTY ESTIMATION AND GLOBAL SENSITIVITY ANALYSIS. 6.1 Model calibration and Factors Mapping Setting. 6.2 Monte Carlo filtering and regionalised sensitivity analysis. 6.2.1 Caveats. 6.3 Putting MC filtering and RSA to work: the problem of hedging a financial portfolio. 6.4 Putting MC filtering and RSA to work: the Level E test case. 6.5 Bayesian uncertainty estimation and global sensitivity analysis. 6.5.1 Bayesian uncertainty estimation. 6.5.2 The GLUE case. 6.5.3 Using global sensitivity analysis in the Bayesian uncertainty estimation. 6.5.4 Implementation of the method. 6.6 Putting Bayesian analysis and global SA to work: two spheres. 6.7 Putting Bayesian analysis and global SA to work: a chemical experiment. 6.7.1 Bayesian uncertainty analysis (GLUE case). 6.7.2 Global sensitivity analysis. 6.7.3 Correlation analysis. 6.7.4 Further analysis by varying temperature in the data set: fewer interactions in the model. 6.8 Caveats. 7. HOW TO USE SIMLAB. 7.1 Introduction. 7.2 How to obtain and install SIMLAB. 7.3 SIMLAB main panel. 7.4 Sample generation. 7.4.1 FAST. 7.4.2 Fixed sampling. 7.4.3 Latin hypercube sampling (LHS). 7.4.4 The method of Morris. 7.4.5 Quasi--Random LpTau. 7.4.6 Random. 7.4.7 Replicated Latin Hypercube (r--LHS). 7.4.8 The method of Sobol'. 7.4.9 How to induce dependencies in the input factors. 7.5 How to execute models. 7.6 Sensitivity analysis. 8. FAMOUS QUOTES: SENSITIVITY ANALYSIS IN THE SCIENTIFIC DISCOURSE. REFERENCES. INDEX.

2,297 citations

Journal ArticleDOI
TL;DR: Existing and new practices for sensitivity analysis of model output are compared and recommendations on which to use are offered to help practitioners choose which techniques to use.

2,265 citations