scispace - formally typeset
Search or ask a question
Author

Kuruvilla Joseph

Bio: Kuruvilla Joseph is an academic researcher from Indian Institute of Space Science and Technology. The author has contributed to research in topics: Natural rubber & Dynamic mechanical analysis. The author has an hindex of 44, co-authored 222 publications receiving 9129 citations. Previous affiliations of Kuruvilla Joseph include Federal University of Paraíba & Indian Space Research Organisation.


Papers
More filters
Journal ArticleDOI
01 Nov 1996-Polymer
TL;DR: The effect of chemical treatment on the tensile properties of sisal fiber-reinforced LDPE composites was investigated in this article, where various chemical treatments were carried out to improve the bonding at the fibre polymer interface.

666 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of chemical treatment on the tensile properties of sisal/PP composites was investigated, and it was observed that all the treatments enhanced the composites considerably, but to varying degrees.

495 citations

Journal ArticleDOI
TL;DR: In this article, the dynamic and static mechanical properties of randomly oriented intimately mixed short banana/sisal hybrid fiber reinforced polyester composites were determined, and the experimental results confirmed the quantitative characterisation obtained from static and dynamic mechanical analysis.

471 citations

Journal ArticleDOI
TL;DR: In this article, chemical modifications were made to sisal fiber using a urethane derivative of polypropylene glycol (PPG/TDI), maleic anhydride modified polypropylon (MAPP), and KMnO4 in order to improve the interfacial adhesion between the fibre and matrix.
Abstract: The thermal and crystallisation behaviour of sisal/PP composites was studied by thermogravimetry (TG), differential scanning calorimetry (DSC) and polarising optical microscopy. Chemical modifications were made to sisal fibre using a urethane derivative of polypropylene glycol (PPG/TDI), maleic anhydride modified polypropylene (MAPP), and KMnO4 in order to improve the interfacial adhesion between the fibre and matrix. The thermal properties of the blends were analysed by TG analysis. The effects of fibre content and chemical treatments on the thermal properties were evaluated. It was found that treated fibre composites show superior properties compared to the untreated system. DSC measurements exhibited an increase in the crystallisation temperature and crystallinity, upon the addition of fibres to the PP matrix. This is attributed to the nucleating effects of the fibre surfaces, resulting in the formation of transcrystalline regions. On increasing the fibre content, the melting peak of the PP component was shifted to higher temperatures suggesting a constrained melting. The thickness of the transcrystalline layer formed depends on crystallisation temperature and time. The transcrystalline growth rate was slow in the quiescent state. On the other hand, upon the application of stress, transcrystallinity developed quickly. In fact, the shear stress at the polymer/fibre interface initiated the nucleation. Fibre surface modification by PPG/TDI increases the nucleating ability of sisal fibre to a very small extent.

459 citations

Journal ArticleDOI
TL;DR: In this paper, the influence of water uptake on the tensile properties of short sisal/PP composites has been studied with special reference to the effect of ageing conditions like treatment with water and UV radiation.

446 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A comprehensive review of literature on bio-fiber reinforced composites is presented in this paper, where the overall characteristics of reinforcing fibers used in biocomposites, including source, type, structure, composition, as well as mechanical properties, are reviewed.

3,074 citations

Journal ArticleDOI
TL;DR: In this article, different chemical modifications on natural fibers for use in natural fiber-reinforced composites are reviewed, including alkali, silane, acetylation, benzoylation, acrylation, maleated coupling agents and permanganate.
Abstract: Studies on the use of natural fibers as replacement to man-made fiber in fiber-reinforced composites have increased and opened up further industrial possibilities. Natural fibers have the advantages of low density, low cost, and biodegradability. However, the main disadvantages of natural fibers in composites are the poor compatibility between fiber and matrix and the relative high moisture sorption. Therefore, chemical treatments are considered in modifying the fiber surface properties. In this paper, the different chemical modifications on natural fibers for use in natural fiber-reinforced composites are reviewed. Chemical treatments including alkali, silane, acetylation, benzoylation, acrylation, maleated coupling agents, isocyanates, permanganate and others are discussed. The chemical treatment of fiber aimed at improving the adhesion between the fiber surface and the polymer matrix may not only modify the fiber surface but also increase fiber strength. Water absorption of composites is reduced and their mechanical properties are improved.

2,286 citations

Journal ArticleDOI
TL;DR: A review of natural fiber reinforced composites is presented in this paper with special reference to the type of fibers, matrix polymers, treatment of fibers and fiber-matrix interface.
Abstract: Natural fiber reinforced composites is an emerging area in polymer science. These natural fibers are low cost fibers with low density and high specific properties. These are biodegradable and non-abrasive. The natural fiber composites offer specific properties comparable to those of conventional fiber composites. However, in development of these composites, the incompatibility of the fibers and poor resistance to moisture often reduce the potential of natural fibers and these draw backs become critical issue. This review presents the reported work on natural fiber reinforced composites with special reference to the type of fibers, matrix polymers, treatment of fibers and fiber-matrix interface. © 1999 John Wiley & Sons, Inc. Adv in Polymer Techn 18: 351–363, 1999

2,210 citations

Journal ArticleDOI
Abstract: Recently, there has been a rapid growth in research and innovation in the natural fibre composite (NFC) area. Interest is warranted due to the advantages of these materials compared to others, such as synthetic fibre composites, including low environmental impact and low cost and support their potential across a wide range of applications. Much effort has gone into increasing their mechanical performance to extend the capabilities and applications of this group of materials. This review aims to provide an overview of the factors that affect the mechanical performance of NFCs and details achievements made with them.

2,182 citations

Journal ArticleDOI
TL;DR: A review of the literature on the various aspects of cellulosic fibres and biocomposites can be found in this paper, where the pros and cons of using these fibres are enumerated in this review.

1,908 citations