scispace - formally typeset
Search or ask a question
Author

Kwaku Poku Asante

Other affiliations: Ministry of Health (Ghana)
Bio: Kwaku Poku Asante is an academic researcher from University of London. The author has contributed to research in topics: Malaria & Medicine. The author has an hindex of 30, co-authored 145 publications receiving 4019 citations. Previous affiliations of Kwaku Poku Asante include Ministry of Health (Ghana).
Topics: Malaria, Medicine, Population, Vaccination, RTS,S


Papers
More filters
Journal ArticleDOI
TL;DR: The RTS,S/AS01 vaccine provided protection against both clinical and severe malaria in African children, and serious adverse events occurred with a similar frequency in the two study groups.
Abstract: BACKGROUND An ongoing phase 3 study of the efficacy, safety, and immunogenicity of candidate malaria vaccine RTS,S/AS01 is being conducted in seven African countries. METHODS From March 2009 through January 2011, we enrolled 15,460 children in two age categories--6 to 12 weeks of age and 5 to 17 months of age--for vaccination with either RTS,S/AS01 or a non-malaria comparator vaccine. The primary end point of the analysis was vaccine efficacy against clinical malaria during the 12 months after vaccination in the first 6000 children 5 to 17 months of age at enrollment who received all three doses of vaccine according to protocol. After 250 children had an episode of severe malaria, we evaluated vaccine efficacy against severe malaria in both age categories. RESULTS In the 14 months after the first dose of vaccine, the incidence of first episodes of clinical malaria in the first 6000 children in the older age category was 0.32 episodes per person-year in the RTS,S/AS01 group and 0.55 episodes per person-year in the control group, for an efficacy of 50.4% (95% confidence interval [CI], 45.8 to 54.6) in the intention-to-treat population and 55.8% (97.5% CI, 50.6 to 60.4) in the per-protocol population. Vaccine efficacy against severe malaria was 45.1% (95% CI, 23.8 to 60.5) in the intention-to-treat population and 47.3% (95% CI, 22.4 to 64.2) in the per-protocol population. Vaccine efficacy against severe malaria in the combined age categories was 34.8% (95% CI, 16.2 to 49.2) in the per-protocol population during an average follow-up of 11 months. Serious adverse events occurred with a similar frequency in the two study groups. Among children in the older age category, the rate of generalized convulsive seizures after RTS,S/AS01 vaccination was 1.04 per 1000 doses (95% CI, 0.62 to 1.64). CONCLUSIONS The RTS,S/AS01 vaccine provided protection against both clinical and severe malaria in African children. (Funded by GlaxoSmithKline Biologicals and the PATH Malaria Vaccine Initiative; RTS,S ClinicalTrials.gov number, NCT00866619 .).

784 citations

Journal ArticleDOI
Selidji T Agnandji1, Selidji T Agnandji2, Bertrand Lell2, Bertrand Lell1  +165 moreInstitutions (14)
TL;DR: The RTS,S/AS01 vaccine coadministered with EPI vaccines provided modest protection against both clinical and severe malaria in young infants.
Abstract: BACKGROUND: The candidate malaria vaccine RTS,S/AS01 reduced episodes of both clinical and severe malaria in children 5 to 17 months of age by approximately 50% in an ongoing phase 3 trial. We studied infants 6 to 12 weeks of age recruited for the same trial. METHODS: We administered RTS,S/AS01 or a comparator vaccine to 6537 infants who were 6 to 12 weeks of age at the time of the first vaccination in conjunction with Expanded Program on Immunization (EPI) vaccines in a three-dose monthly schedule. Vaccine efficacy against the first or only episode of clinical malaria during the 12 months after vaccination, a coprimary end point, was analyzed with the use of Cox regression. Vaccine efficacy against all malaria episodes, vaccine efficacy against severe malaria, safety, and immunogenicity were also assessed. RESULTS: The incidence of the first or only episode of clinical malaria in the intention-to-treat population during the 14 months after the first dose of vaccine was 0.31 per person-year in the RTS,S/AS01 group and 0.40 per person-year in the control group, for a vaccine efficacy of 30.1% (95% confidence interval [CI], 23.6 to 36.1). Vaccine efficacy in the per-protocol population was 31.3% (97.5% CI, 23.6 to 38.3). Vaccine efficacy against severe malaria was 26.0% (95% CI, -7.4 to 48.6) in the intention-to-treat population and 36.6% (95% CI, 4.6 to 57.7) in the per-protocol population. Serious adverse events occurred with a similar frequency in the two study groups. One month after administration of the third dose of RTS,S/AS01, 99.7% of children were positive for anti-circumsporozoite antibodies, with a geometric mean titer of 209 EU per milliliter (95% CI, 197 to 222). CONCLUSIONS: The RTS,S/AS01 vaccine coadministered with EPI vaccines provided modest protection against both clinical and severe malaria in young infants. (Funded by GlaxoSmithKline Biologicals and the PATH Malaria Vaccine Initiative; RTS,S ClinicalTrials.gov number, NCT00866619.).

700 citations

Journal ArticleDOI
TL;DR: Anti-circumsporozoite antibody titres are a surrogate of protection for the magnitude and duration of R TS,S/AS01 efficacy, with or without a booster dose, providing a valuable surrogate of effectiveness for new RTS,S formulations in the age groups considered.
Abstract: Summary Background The RTS,S/AS01 malaria vaccine targets the circumsporozoite protein, inducing antibodies associated with the prevention of Plasmodium falciparum infection. We assessed the association between anti-circumsporozoite antibody titres and the magnitude and duration of vaccine efficacy using data from a phase 3 trial done between 2009 and 2014. Methods Using data from 8922 African children aged 5–17 months and 6537 African infants aged 6–12 weeks at first vaccination, we analysed the determinants of immunogenicity after RTS,S/AS01 vaccination with or without a booster dose. We assessed the association between the incidence of clinical malaria and anti-circumsporozoite antibody titres using a model of anti-circumsporozoite antibody dynamics and the natural acquisition of protective immunity over time. Findings RTS,S/AS01-induced anti-circumsporozoite antibody titres were greater in children aged 5–17 months than in those aged 6–12 weeks. Pre-vaccination anti-circumsporozoite titres were associated with lower immunogenicity in children aged 6–12 weeks and higher immunogenicity in those aged 5–17 months. The immunogenicity of the booster dose was strongly associated with immunogenicity after primary vaccination. Anti-circumsporozoite titres wane according to a biphasic exponential distribution. In participants aged 5–17 months, the half-life of the short-lived component of the antibody response was 45 days (95% credible interval 42–48) and that of the long-lived component was 591 days (557–632). After primary vaccination 12% (11–13) of the response was estimated to be long-lived, rising to 30% (28–32%) after a booster dose. An anti-circumsporozoite antibody titre of 121 EU/mL (98–153) was estimated to prevent 50% of infections. Waning anti-circumsporozoite antibody titres predict the duration of efficacy against clinical malaria across different age categories and transmission intensities, and efficacy wanes more rapidly at higher transmission intensity. Interpretation Anti-circumsporozoite antibody titres are a surrogate of protection for the magnitude and duration of RTS,S/AS01 efficacy, with or without a booster dose, providing a valuable surrogate of effectiveness for new RTS,S formulations in the age groups considered. Funding UK Medical Research Council.

232 citations

Journal ArticleDOI
TL;DR: Vaccine efficacy was consistent with the target put forward by the WHO-sponsored malaria vaccine technology roadmap for a first-generation malaria vaccine.
Abstract: Summary Background The RTS,S/AS01 E candidate malaria vaccine is being developed for immunisation of infants in Africa through the expanded programme on immunisation (EPI). 8 month follow-up data have been reported for safety and immunogenicity of RTS,S/AS01 E when integrated into the EPI. We report extended follow-up to 19 months, including efficacy results. Methods We did a randomised, open-label, phase 2 trial of safety and efficacy of the RTS,S/AS01 E candidate malaria vaccine given with EPI vaccines between April 30, 2007, and Oct 7, 2009, in Ghana, Tanzania, and Gabon. Eligible children were 6–10 weeks of age at first vaccination, without serious acute or chronic illness. All children received the EPI diphtheria, tetanus, pertussis (inactivated whole-cell), and hepatitis-B vaccines, Haemophilus influenzae type b vaccine, and oral polio vaccine at study months 0, 1, and 2, and measles vaccine and yellow fever vaccines at study month 7. Participants were randomly assigned (1:1:1) to receive three doses of RTS,S/AS01 E at 6, 10, and 14 weeks (0, 1, 2 month schedule) or at 6 weeks, 10 weeks, and 9 months (0, 2, 7 month schedule) or placebo. Randomisation was according to a predefined block list with a computer-generated randomisation code. Detection of serious adverse events and malaria was by passive case detection. Antibodies against Plasmodium falciparum circumsporozoite protein and HBsAg were monitored for 19 months. This study is registered with ClinicalTrials.gov, number NCT00436007. Findings 511 children were enrolled. Serious adverse events occurred in 57 participants in the RTS,S/AS01 E 0, 1, 2 month group (34%, 95% CI 27–41), 47 in the 0, 1, 7 month group (28%, 21–35), and 49 (29%, 22–36) in the control group; none were judged to be related to study vaccination. At month 19, anticircumsporozoite immune responses were significantly higher in the RTS,S/AS01 E groups than in the control group. Vaccine efficacy for the 0, 1, 2 month schedule (2 weeks after dose three to month 19, site-adjusted according-to-protocol analysis) was 53% (95% CI 26–70; p=0·0012) against first malaria episodes and 59% (36–74; p=0·0001) against all malaria episodes. For the entire study period, (total vaccinated cohort) vaccine efficacy against all malaria episodes was higher with the 0, 1, 2 month schedule (57%, 95% CI 33–73; p=0·0002) than with the 0, 1, 7 month schedule (32% CI 16–45; p=0·0003). 1 year after dose three, vaccine efficacy against first malaria episodes was similar for both schedules (0, 1, 2 month group, 61·6% [95% CI 35·6–77·1], p Interpretation Vaccine efficacy was consistent with the target put forward by the WHO-sponsored malaria vaccine technology roadmap for a first-generation malaria vaccine. The 0, 1, 2 month vaccine schedule has been selected for phase 3 candidate vaccine assessment. Funding Program for Appropriate Technology in Health Malaria Vaccine Initiative; GlaxoSmithKline Biologicals.

126 citations

Journal ArticleDOI
TL;DR: The transmission of malaria in the forest-savanna region of central Ghana is high and perennial and this is an appropriate site for conducting clinical trials of anti-malarial drugs and vaccines.
Abstract: Information on the epidemiology of malaria is essential for designing and interpreting results of clinical trials of drugs, vaccines and other interventions. As a background to the establishment of a site for anti-malarial drugs and vaccine trials, the epidemiology of malaria in a rural site in central Ghana was investigated. Active surveillance of clinical malaria was carried out in a cohort of children below five years of age (n = 335) and the prevalence of malaria was estimated in a cohort of subjects of all ages (n = 1484) over a 12-month period. Participants were sampled from clusters drawn around sixteen index houses randomly selected from a total of about 22,000 houses within the study area. The child cohort was visited thrice weekly to screen for any illness and a blood slide was taken if a child had a history of fever or a temperature greater than or equal to 37.5 degree Celsius. The all-age cohort was screened for malaria once every eight weeks over a 12-month period. Estimation of Entomological Inoculation Rate (EIR) and characterization of Anopheline malaria vectors in the study area were also carried out. The average parasite prevalence in the all age cohort was 58% (95% CI: 56.9, 59.4). In children below five years of age, the average prevalence was 64% (95% CI: 61.9, 66.0). Geometric mean parasite densities decreased significantly with increasing age. More than 50% of all children less than 10 years of age were anaemic. Children less than 5 years of age had as many as seven malaria attacks per child per year. The attack rates decreased significantly with increasing cut-offs of parasite density. The average Multiplicity of Infection (MOI) was of 6.1. All three pyrimethamine resistance mutant alleles of the Plasmodium falciparum dhfr gene were prevalent in this population and 25% of infections had a fourth mutant of pfdhps-A437G. The main vectors were Anopheles funestus and Anopheles gambiae and the EIR was 269 infective bites per person per year. The transmission of malaria in the forest-savanna region of central Ghana is high and perennial and this is an appropriate site for conducting clinical trials of anti-malarial drugs and vaccines.

122 citations


Cited by
More filters
01 Jan 2016
TL;DR: The modern applied statistics with s is universally compatible with any devices to read, and is available in the digital library an online access to it is set as public so you can download it instantly.
Abstract: Thank you very much for downloading modern applied statistics with s. As you may know, people have search hundreds times for their favorite readings like this modern applied statistics with s, but end up in harmful downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they cope with some harmful virus inside their laptop. modern applied statistics with s is available in our digital library an online access to it is set as public so you can download it instantly. Our digital library saves in multiple countries, allowing you to get the most less latency time to download any of our books like this one. Kindly say, the modern applied statistics with s is universally compatible with any devices to read.

5,249 citations

Journal Article
TL;DR: This volume is keyed to high resolution electron microscopy, which is a sophisticated form of structural analysis, but really morphology in a modern guise, the physical and mechanical background of the instrument and its ancillary tools are simply and well presented.
Abstract: I read this book the same weekend that the Packers took on the Rams, and the experience of the latter event, obviously, colored my judgment. Although I abhor anything that smacks of being a handbook (like, \"How to Earn a Merit Badge in Neurosurgery\") because too many volumes in biomedical science already evince a boyscout-like approach, I must confess that parts of this volume are fast, scholarly, and significant, with certain reservations. I like parts of this well-illustrated book because Dr. Sj6strand, without so stating, develops certain subjects on technique in relation to the acquisition of judgment and sophistication. And this is important! So, given that the author (like all of us) is somewhat deficient in some areas, and biased in others, the book is still valuable if the uninitiated reader swallows it in a general fashion, realizing full well that what will be required from the reader is a modulation to fit his vision, propreception, adaptation and response, and the kind of problem he is undertaking. A major deficiency of this book is revealed by comparison of its use of physics and of chemistry to provide understanding and background for the application of high resolution electron microscopy to problems in biology. Since the volume is keyed to high resolution electron microscopy, which is a sophisticated form of structural analysis, but really morphology in a modern guise, the physical and mechanical background of The instrument and its ancillary tools are simply and well presented. The potential use of chemical or cytochemical information as it relates to biological fine structure , however, is quite deficient. I wonder when even sophisticated morphol-ogists will consider fixation a reaction and not a technique; only then will the fundamentals become self-evident and predictable and this sine qua flon will become less mystical. Staining reactions (the most inadequate chapter) ought to be something more than a technique to selectively enhance contrast of morphological elements; it ought to give the structural addresses of some of the chemical residents of cell components. Is it pertinent that auto-radiography gets singled out for more complete coverage than other significant aspects of cytochemistry by a high resolution microscopist, when it has a built-in minimal error of 1,000 A in standard practice? I don't mean to blind-side (in strict football terminology) Dr. Sj6strand's efforts for what is \"routinely used in our laboratory\"; what is done is usually well done. It's just that …

3,197 citations

Journal ArticleDOI
TL;DR: This analysis updates the widely-cited 10:1 ratio, showing that the number of bacteria in the body is actually of the same order as the numberof human cells, and their total mass is about 0.2 kg.
Abstract: Reported values in the literature on the number of cells in the body differ by orders of magnitude and are very seldom supported by any measurements or calculations. Here, we integrate the most up-to-date information on the number of human and bacterial cells in the body. We estimate the total number of bacteria in the 70 kg "reference man" to be 3.8·1013. For human cells, we identify the dominant role of the hematopoietic lineage to the total count (≈90%) and revise past estimates to 3.0·1013 human cells. Our analysis also updates the widely-cited 10:1 ratio, showing that the number of bacteria in the body is actually of the same order as the number of human cells, and their total mass is about 0.2 kg.

3,166 citations

Journal ArticleDOI
TL;DR: The authors' projection results provide concrete examples of how the distribution of child causes of deaths could look in 15-20 years to inform priority setting in the post-2015 era.
Abstract: Summary Background Trend data for causes of child death are crucial to inform priorities for improving child survival by and beyond 2015. We report child mortality by cause estimates in 2000–13, and cause-specific mortality scenarios to 2030 and 2035. Methods We estimated the distributions of causes of child mortality separately for neonates and children aged 1–59 months. To generate cause-specific mortality fractions, we included new vital registration and verbal autopsy data. We used vital registration data in countries with adequate registration systems. We applied vital registration-based multicause models for countries with low under-5 mortality but inadequate vital registration, and updated verbal autopsy-based multicause models for high mortality countries. We used updated numbers of child deaths to derive numbers of deaths by causes. We applied two scenarios to derive cause-specific mortality in 2030 and 2035. Findings Of the 6·3 million children who died before age 5 years in 2013, 51·8% (3·257 million) died of infectious causes and 44% (2·761 million) died in the neonatal period. The three leading causes are preterm birth complications (0·965 million [15·4%, uncertainty range (UR) 9·8−24·5]; UR 0·615–1·537 million), pneumonia (0·935 million [14·9%, 13·0–16·8]; 0·817–1·057 million), and intrapartum-related complications (0·662 million [10·5%, 6·7–16·8]; 0·421–1·054 million). Reductions in pneumonia, diarrhoea, and measles collectively were responsible for half of the 3·6 million fewer deaths recorded in 2013 versus 2000. Causes with the slowest progress were congenital, preterm, neonatal sepsis, injury, and other causes. If present trends continue, 4·4 million children younger than 5 years will still die in 2030. Furthermore, sub-Saharan Africa will have 33% of the births and 60% of the deaths in 2030, compared with 25% and 50% in 2013, respectively. Interpretation Our projection results provide concrete examples of how the distribution of child causes of deaths could look in 15–20 years to inform priority setting in the post-2015 era. More evidence is needed about shifts in timing, causes, and places of under-5 deaths to inform child survival agendas by and beyond 2015, to end preventable child deaths in a generation, and to count and account for every newborn and every child. Funding Bill & Melinda Gates Foundation.

2,600 citations

Journal ArticleDOI
TL;DR: To eliminate stunting in the longer term, existing interventions that were designed to improve nutrition and prevent related disease could reduce stunting at 36 months by 36%; mortality between birth and 36 monthsBy about 25%; and disability-adjusted life-years associated with stunting, severe wasting, intrauterine growth restriction, and micronutrient deficiencies by about 25%.
Abstract: We reviewed interventions that affect maternal and child undernutrition and nutrition-related outcomes. These interventions included promotion of breastfeeding; strategies to promote complementary feeding, with or without provision of food supplements; micronutrient interventions; general supportive strategies to improve family and community nutrition; and reduction of disease burden (promotion of handwashing and strategies to reduce the burden of malaria in pregnancy). We showed that although strategies for breastfeeding promotion have a large effect on survival, their effect on stunting is small. In populations with sufficient food, education about complementary feeding increased height-for-age Z score by 0.25 (95% CI 0.01-0.49), whereas provision of food supplements (with or without education) in populations with insufficient food increased the height-for-age Z score by 0.41 (0.05-0.76). Management of severe acute malnutrition according to WHO guidelines reduced the case-fatality rate by 55% (risk ratio 0.45, 0.32-0.62), and recent studies suggest that newer commodities, such as ready-to-use therapeutic foods, can be used to manage severe acute malnutrition in community settings. Effective micronutrient interventions for pregnant women included supplementation with iron folate (which increased haemoglobin at term by 12 g/L, 2.93-21.07) and micronutrients (which reduced the risk of low birthweight at term by 16% (relative risk 0.84, 0.74-0.95). Recommended micronutrient interventions for children included strategies for supplementation of vitamin A (in the neonatal period and late infancy), preventive zinc supplements, iron supplements for children in areas where malaria is not endemic, and universal promotion of iodised salt. We used a cohort model to assess the potential effect of these interventions on mothers and children in the 36 countries that have 90% of children with stunted linear growth. The model showed that existing interventions that were designed to improve nutrition and prevent related disease could reduce stunting at 36 months by 36%; mortality between birth and 36 months by about 25%; and disability-adjusted life-years associated with stunting, severe wasting, intrauterine growth restriction, and micronutrient deficiencies by about 25%. To eliminate stunting in the longer term, these interventions should be supplemented by improvements in the underlying determinants of undernutrition, such as poverty, poor education, disease burden, and lack of women's empowerment.

2,114 citations