scispace - formally typeset
Search or ask a question
Author

Kwang-Hwa Liu

Bio: Kwang-Hwa Liu is an academic researcher from Virginia Tech. The author has contributed to research in topics: Converters & RLC circuit. The author has an hindex of 10, co-authored 11 publications receiving 1784 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a novel resonant switch operating under the principle of zero-voltage switching is presented, and the circuit's operating principles are described using a voltage-mode quasi-resonant boost converter.
Abstract: A novel resonant switch operating under the principle of zero-voltage switching is presented. The basic configurations of the voltage-mode resonant switches are presented. The circuit's operating principles are described using a voltage-mode quasi-resonant boost converter. DC analysis of the converter is carried out. A new family of voltage-mode quasi-resonant converters are derived, and several members of this family are presented. The duality relationship between the zero-current switching technique and the zero-voltage switching technique is derived. These two techniques are compared using an example showing the duality between a current-mode quasi-resonant Buck converter and a voltage-mode quasi-resonant boost converter. The similarities and differences of the voltage-mode quasi-resonant converters and the Class-E converters are discussed. A 5 MHz 50 V to 5 V flyback converter employing the zero-voltage switching technique has been implemented. Design considerations and experimental results of this circuit are presented. >

440 citations

Proceedings ArticleDOI
24 Jun 1985
TL;DR: In this article, the concept of resonant switch was proposed to overcome the obstacles of higher switching stresses and switching losses in conventional switching converters, by incorporating additional Land C elements to shape device current and voltage waveforms, the desired zero-current switching property can be realized.
Abstract: In designing conventional switching converters, the effort to increase operating frequency in order to reduce weight, size and cost of magnetic and filter elements is constantly hampered by higher switching stresses and switching losses. To overcome these obstacles, the concept of resonant switch was proposed. By incorporating additional Land C elements to shape device current and voltage waveforms, the desired zero-current switching property can be realized which enables converters to operate in the megahertz range.

287 citations

Journal ArticleDOI
TL;DR: In this article, a quasi-resonant switch with inductor and capacitor elements to shape the semiconductor switch's current waveform is proposed. And a new host of quasi-reonant converter circuits have been derived, which can be operated in the megahertz range.
Abstract: In designing switching dc-dc converters, the effort to increase operating frequency to reduce weight, size, and cost of magnetic and filter elements is constantly hampered by higher switching stresses and switching losses. To overcome these obstacles, the concept of the "resonant switch" is proposed. By incorporating additional inductor and capacitor elements to shape the semiconductor switch's current waveform, a "zero-current switching" property can be realized. Based on the resonant switch technique, a new host of quasi-resonant converter circuits have been derived, which can be operated in the megahertz range.

272 citations

Proceedings ArticleDOI
23 Jun 1986
TL;DR: In this article, a novel resonant switch operating under the principle of zerovoltage switching is presented, which eliminates the switching loss and dv/dt noise due to discharging of MOSFET's junction capacitances and the reverse recovery of diodes, and enables the converters to operate at yet higher frequencies.
Abstract: A novel resonant switch operating under the principle of zero-voltage switching is presented. In contrast to the zero-current switching, this technique eliminates the switching loss and dv/dt noise due to the discharging of MOSFET's junction capacitances and the reverse recovery of diodes, and enables the converters to operate at yet higher frequencies.

239 citations

Proceedings ArticleDOI
01 Nov 1984
TL;DR: In searching for a general "zero-current-Switching" technique for DC-DC converters, the concept of resonant switches is developed and application of the resonant switch concept to conventional converters leads to the discovery of a host of new converter circuits.
Abstract: In searching for a general "zero-current-Switching" technique for DC-DC converters, the concept of resonant switches is developed. As a combination of switching device and LC network, the resonant switch offers advantages of quasi-sinusoidal current waveforms, zero switching stresses, zero switching losses, self-commutation, and reduced EMI. Furthermore, application of the resonant switch concept to conventional converters leads to the discovery of a host of new converter circuits.

163 citations


Cited by
More filters
Journal ArticleDOI
02 Oct 1988
TL;DR: In this paper, three DC/DC converter topologies suitable for high power-density high power applications are presented, which operate in a soft-switched manner, making possible a reduction in device switching losses and an increase in switching frequency.
Abstract: Three DC/DC converter topologies suitable for high-power-density high-power applications are presented. All three circuits operate in a soft-switched manner, making possible a reduction in device switching losses and an increase in switching frequency. The three-phase dual-bridge converter proposed is shown to have the most favorable characteristics. This converter consists of two three-phase inverter stages operating in a high-frequency six-step mode. In contrast to existing single-phase AC-link DC/DC converters, lower turn-off peak currents in the power devices and lower RMS current ratings for both the input and output filter capacitors are obtained. This is in addition to smaller filter element values due to the higher-frequency content of the input and output waveforms. Furthermore, the use of a three-phase symmetrical transformer instead of single-phase transformers and a better utilization of the available apparent power of the transformer (as a consequence of the controlled output inverter) significantly increase the power density attainable. >

2,056 citations

Journal ArticleDOI
07 Oct 1990
TL;DR: In this article, the performance of a high-power, high-density DC-to-DC converter based on the single-phase dual active bridge (DAB) topology is described.
Abstract: The performance of a high-power, high-power-density DC-to-DC converter based on the single-phase dual active bridge (DAB) topology is described. The dual active bridge converter has been shown to have very attractive features in terms of low device and component stresses, small filter components, low switching losses, high power density and high efficiency, bidirectional power flow, buck-boost operation, and low sensitivity to system parasitics. For high output voltages, on the order of kilovolts, a cascaded output structure is considered. The effects of snubber capacitance and magnetizing inductance on the soft switching region of control are discussed. Various control schemes are outlined. Coaxial transformer design techniques have been utilized to carefully control leakage inductance. The layout and experimental performance of a prototype 50 kW 50 kHz unit operating with an input voltage of 200 V DC and an output voltage of 1600 V DC are presented. >

1,311 citations

Journal ArticleDOI
29 Jun 1992
TL;DR: In this paper, a class of zero voltage transition (ZVT) power converters is proposed in which both the transistor and the rectifier operate with zero voltage switching and are subjected to minimum voltage and current stresses.
Abstract: A class of zero voltage transition (ZVT) power converters is proposed in which both the transistor and the rectifier operate with zero voltage switching and are subjected to minimum voltage and current stresses. The boost ZVT-PWM converter is used as an example to illustrate the operation of these converters. A 300 kHz, 600 W ZVT-PWM boost, DC-DC converter, and a 100 kHz, 600 W power factor correction circuit using the ZVT-PWM technique and an insulated gate bipolar transistor (IGBT) device were breadboarded to show the operation of the proposed converters. It is shown that the circuit technology greatly improves the converter performance in terms of efficiency, switching noise, and circuit reliability. >

896 citations

Book
15 Sep 2014
TL;DR: In this article, the authors present a practical guide for understanding basic GaN transistor construction, characteristics, and applications, as well as specific application examples demonstrating design techniques when employing GaN devices.
Abstract: This timely second edition has been substantially expanded to keep students and practicing power conversion engineers ahead of the learning curve in GaN technology advancements. Acknowledging that GaN transistors are not one-to-one replacements for the current MOSFET technology, this book serves as a practical guide for understanding basic GaN transistor construction, characteristics, and applications. Included are discussions on the fundamental physics of these power semiconductors, layout and other circuit design considerations, as well as specific application examples demonstrating design techniques when employing GaN devices.

506 citations

Journal ArticleDOI
TL;DR: In this paper, a novel resonant switch operating under the principle of zero-voltage switching is presented, and the circuit's operating principles are described using a voltage-mode quasi-resonant boost converter.
Abstract: A novel resonant switch operating under the principle of zero-voltage switching is presented. The basic configurations of the voltage-mode resonant switches are presented. The circuit's operating principles are described using a voltage-mode quasi-resonant boost converter. DC analysis of the converter is carried out. A new family of voltage-mode quasi-resonant converters are derived, and several members of this family are presented. The duality relationship between the zero-current switching technique and the zero-voltage switching technique is derived. These two techniques are compared using an example showing the duality between a current-mode quasi-resonant Buck converter and a voltage-mode quasi-resonant boost converter. The similarities and differences of the voltage-mode quasi-resonant converters and the Class-E converters are discussed. A 5 MHz 50 V to 5 V flyback converter employing the zero-voltage switching technique has been implemented. Design considerations and experimental results of this circuit are presented. >

440 citations