scispace - formally typeset
Search or ask a question
Author

Kwang In Kim

Other affiliations: Saarland University, University of Bath, Max Planck Society  ...read more
Bio: Kwang In Kim is an academic researcher from Ulsan National Institute of Science and Technology. The author has contributed to research in topics: Laplacian matrix & Support vector machine. The author has an hindex of 32, co-authored 99 publications receiving 6059 citations. Previous affiliations of Kwang In Kim include Saarland University & University of Bath.


Papers
More filters
Journal ArticleDOI
TL;DR: Compared with existing algorithms, KRR leads to a better generalization than simply storing the examples as has been done in existing example-based algorithms and results in much less noisy images.
Abstract: This paper proposes a framework for single-image super-resolution. The underlying idea is to learn a map from input low-resolution images to target high-resolution images based on example pairs of input and output images. Kernel ridge regression (KRR) is adopted for this purpose. To reduce the time complexity of training and testing for KRR, a sparse solution is found by combining the ideas of kernel matching pursuit and gradient descent. As a regularized solution, KRR leads to a better generalization than simply storing the examples as has been done in existing example-based algorithms and results in much less noisy images. However, this may introduce blurring and ringing artifacts around major edges as sharp changes are penalized severely. A prior model of a generic image class which takes into account the discontinuity property of images is adopted to resolve this problem. Comparison with existing algorithms shows the effectiveness of the proposed method.

938 citations

Journal ArticleDOI
TL;DR: A large number of techniques to address the problem of text information extraction are classified and reviewed, benchmark data and performance evaluation are discussed, and promising directions for future research are pointed out.

927 citations

Journal ArticleDOI
TL;DR: Through adopting a polynomial kernel, the principal components can be computed within the space spanned by high-order correlations of input pixels making up a facial image, thereby producing a good performance.
Abstract: A kernel principal component analysis (PCA) was previously proposed as a nonlinear extension of a PCA. The basic idea is to first map the input space into a feature space via nonlinear mapping and then compute the principal components in that feature space. This article adopts the kernel PCA as a mechanism for extracting facial features. Through adopting a polynomial kernel, the principal components can be computed within the space spanned by high-order correlations of input pixels making up a facial image, thereby producing a good performance.

520 citations

Journal ArticleDOI
TL;DR: The combination of CAMSHIFT and SVMs produces both robust and efficient text detection, as time-consuming texture analyses for less relevant pixels are restricted, leaving only a small part of the input image to be texture-analyzed.
Abstract: The current paper presents a novel texture-based method for detecting texts in images. A support vector machine (SVM) is used to analyze the textural properties of texts. No external texture feature extraction module is used, but rather the intensities of the raw pixels that make up the textural pattern are fed directly to the SVM, which works well even in high-dimensional spaces. Next, text regions are identified by applying a continuously adaptive mean shift algorithm (CAMSHIFT) to the results of the texture analysis. The combination of CAMSHIFT and SVMs produces both robust and efficient text detection, as time-consuming texture analyses for less relevant pixels are restricted, leaving only a small part of the input image to be texture-analyzed.

473 citations

Journal ArticleDOI
TL;DR: Experimental results demonstrate the effectiveness of SVMs in texture classification, and it is shown that SVMs can incorporate conventional texture feature extraction methods within their own architecture, while also providing solutions to problems inherent in these methods.
Abstract: This paper investigates the application of support vector machines (SVMs) in texture classification. Instead of relying on an external feature extractor, the SVM receives the gray-level values of the raw pixels, as SVMs can generalize well even in high-dimensional spaces. Furthermore, it is shown that SVMs can incorporate conventional texture feature extraction methods within their own architecture, while also providing solutions to problems inherent in these methods. One-against-others decomposition is adopted to apply binary SVMs to multitexture classification, plus a neural network is used as an arbitrator to make final classifications from several one-against-others SVM outputs. Experimental results demonstrate the effectiveness of SVMs in texture classification.

359 citations


Cited by
More filters
Proceedings ArticleDOI
21 Jul 2017
TL;DR: SRGAN as mentioned in this paper proposes a perceptual loss function which consists of an adversarial loss and a content loss, which pushes the solution to the natural image manifold using a discriminator network that is trained to differentiate between the super-resolved images and original photo-realistic images.
Abstract: Despite the breakthroughs in accuracy and speed of single image super-resolution using faster and deeper convolutional neural networks, one central problem remains largely unsolved: how do we recover the finer texture details when we super-resolve at large upscaling factors? The behavior of optimization-based super-resolution methods is principally driven by the choice of the objective function. Recent work has largely focused on minimizing the mean squared reconstruction error. The resulting estimates have high peak signal-to-noise ratios, but they are often lacking high-frequency details and are perceptually unsatisfying in the sense that they fail to match the fidelity expected at the higher resolution. In this paper, we present SRGAN, a generative adversarial network (GAN) for image super-resolution (SR). To our knowledge, it is the first framework capable of inferring photo-realistic natural images for 4x upscaling factors. To achieve this, we propose a perceptual loss function which consists of an adversarial loss and a content loss. The adversarial loss pushes our solution to the natural image manifold using a discriminator network that is trained to differentiate between the super-resolved images and original photo-realistic images. In addition, we use a content loss motivated by perceptual similarity instead of similarity in pixel space. Our deep residual network is able to recover photo-realistic textures from heavily downsampled images on public benchmarks. An extensive mean-opinion-score (MOS) test shows hugely significant gains in perceptual quality using SRGAN. The MOS scores obtained with SRGAN are closer to those of the original high-resolution images than to those obtained with any state-of-the-art method.

6,884 citations

Book ChapterDOI
08 Oct 2016
TL;DR: In this paper, the authors combine the benefits of both approaches, and propose the use of perceptual loss functions for training feed-forward networks for image style transfer, where a feedforward network is trained to solve the optimization problem proposed by Gatys et al. in real-time.
Abstract: We consider image transformation problems, where an input image is transformed into an output image. Recent methods for such problems typically train feed-forward convolutional neural networks using a per-pixel loss between the output and ground-truth images. Parallel work has shown that high-quality images can be generated by defining and optimizing perceptual loss functions based on high-level features extracted from pretrained networks. We combine the benefits of both approaches, and propose the use of perceptual loss functions for training feed-forward networks for image transformation tasks. We show results on image style transfer, where a feed-forward network is trained to solve the optimization problem proposed by Gatys et al. in real-time. Compared to the optimization-based method, our network gives similar qualitative results but is three orders of magnitude faster. We also experiment with single-image super-resolution, where replacing a per-pixel loss with a perceptual loss gives visually pleasing results.

6,639 citations

Journal ArticleDOI
TL;DR: Zhang et al. as discussed by the authors proposed a deep learning method for single image super-resolution (SR), which directly learns an end-to-end mapping between the low/high-resolution images.
Abstract: We propose a deep learning method for single image super-resolution (SR). Our method directly learns an end-to-end mapping between the low/high-resolution images. The mapping is represented as a deep convolutional neural network (CNN) that takes the low-resolution image as the input and outputs the high-resolution one. We further show that traditional sparse-coding-based SR methods can also be viewed as a deep convolutional network. But unlike traditional methods that handle each component separately, our method jointly optimizes all layers. Our deep CNN has a lightweight structure, yet demonstrates state-of-the-art restoration quality, and achieves fast speed for practical on-line usage. We explore different network structures and parameter settings to achieve trade-offs between performance and speed. Moreover, we extend our network to cope with three color channels simultaneously, and show better overall reconstruction quality.

6,122 citations

Posted Content
TL;DR: This work considers image transformation problems, and proposes the use of perceptual loss functions for training feed-forward networks for image transformation tasks, and shows results on image style transfer, where aFeed-forward network is trained to solve the optimization problem proposed by Gatys et al. in real-time.
Abstract: We consider image transformation problems, where an input image is transformed into an output image. Recent methods for such problems typically train feed-forward convolutional neural networks using a \emph{per-pixel} loss between the output and ground-truth images. Parallel work has shown that high-quality images can be generated by defining and optimizing \emph{perceptual} loss functions based on high-level features extracted from pretrained networks. We combine the benefits of both approaches, and propose the use of perceptual loss functions for training feed-forward networks for image transformation tasks. We show results on image style transfer, where a feed-forward network is trained to solve the optimization problem proposed by Gatys et al in real-time. Compared to the optimization-based method, our network gives similar qualitative results but is three orders of magnitude faster. We also experiment with single-image super-resolution, where replacing a per-pixel loss with a perceptual loss gives visually pleasing results.

5,668 citations

Posted Content
TL;DR: SRGAN, a generative adversarial network (GAN) for image super-resolution (SR), is presented, to its knowledge, the first framework capable of inferring photo-realistic natural images for 4x upscaling factors and a perceptual loss function which consists of an adversarial loss and a content loss.
Abstract: Despite the breakthroughs in accuracy and speed of single image super-resolution using faster and deeper convolutional neural networks, one central problem remains largely unsolved: how do we recover the finer texture details when we super-resolve at large upscaling factors? The behavior of optimization-based super-resolution methods is principally driven by the choice of the objective function. Recent work has largely focused on minimizing the mean squared reconstruction error. The resulting estimates have high peak signal-to-noise ratios, but they are often lacking high-frequency details and are perceptually unsatisfying in the sense that they fail to match the fidelity expected at the higher resolution. In this paper, we present SRGAN, a generative adversarial network (GAN) for image super-resolution (SR). To our knowledge, it is the first framework capable of inferring photo-realistic natural images for 4x upscaling factors. To achieve this, we propose a perceptual loss function which consists of an adversarial loss and a content loss. The adversarial loss pushes our solution to the natural image manifold using a discriminator network that is trained to differentiate between the super-resolved images and original photo-realistic images. In addition, we use a content loss motivated by perceptual similarity instead of similarity in pixel space. Our deep residual network is able to recover photo-realistic textures from heavily downsampled images on public benchmarks. An extensive mean-opinion-score (MOS) test shows hugely significant gains in perceptual quality using SRGAN. The MOS scores obtained with SRGAN are closer to those of the original high-resolution images than to those obtained with any state-of-the-art method.

4,404 citations