scispace - formally typeset
Search or ask a question
Author

Kwang Joon Yoon

Other affiliations: Samsung
Bio: Kwang Joon Yoon is an academic researcher from Konkuk University. The author has contributed to research in topics: Actuator & Unimorph. The author has an hindex of 20, co-authored 120 publications receiving 1384 citations. Previous affiliations of Kwang Joon Yoon include Samsung.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, an analytical design model for a layered piezo-composite unimorph actuator and its numerical and experimental verification using a LIPCA (lightweight piezo composite curved actuator) that is composed of top fiber composite layers with high modulus and low CTE (coefficient of thermal expansion), a middle PZT ceramic wafer, and base layers with low modulus with high CTE.
Abstract: This paper describes an analytical design model for a layered piezo-composite unimorph actuator and its numerical and experimental verification using a LIPCA (lightweight piezo-composite curved actuator) that is lighter than other conventional piezo-composite type actuators. The LIPCA is composed of top fiber composite layers with high modulus and low CTE (coefficient of thermal expansion), a middle PZT ceramic wafer, and base layers with low modulus and high CTE. The advantages of the LIPCA design are to replace the heavy metal layer of THUNDER by lightweight fiber-reinforced plastic layers without compromising the generation of high force and large displacement and to have design flexibility by selecting the fiber direction and the number of prepreg layers. In addition to the lightweight advantage and design flexibility, the proposed device can be manufactured without adhesive layers when we use a resin prepreg system. A piezo-actuation model for a laminate with piezo-electric material layers and fiber composite layers is proposed to predict the curvature and residual stress of the LIPCA. To predict the actuation displacement of the LIPCA with curvature, a finite element analysis method using the proposed piezo-actuation model is introduced. The predicted deformations are in good agreement with the experimental ones.

124 citations

Journal ArticleDOI
TL;DR: The advance ratio is the most significant factor in an ornithopter which mimics an insect, and is controlled either by enlarging theWing beat amplitude or raising the wing beat frequency.

71 citations

Journal ArticleDOI
TL;DR: In this article, a finite element formulation for three-dimensional cure simulation of composite structures is introduced and a threedimensional finite element code is developed based on the formulation, which can be used for composite structures with arbitrary geometry under non-uniform autoclave temperature distribution.

63 citations

Journal ArticleDOI
Sahng Min Lim1, Sangki Lee1, Hoon Cheol Park1, Kwang Joon Yoon1, Nam Seo Goo1 
TL;DR: In this article, the authors describe the design and evaluation of biomimetic wing sections, where the trailing edges of the wing sections are actuated by the piezoceramic actuator LIPCA (lightweight piezo-composite actuator).
Abstract: This paper describes the design and evaluation of biomimetic wing sections, where the trailing edges of the wing sections are actuated by the piezoceramic actuator LIPCA (lightweight piezo-composite actuator). Thermal analogy based on linear elasticity was used for the design and analysis of the wing sections. In the actuation test of the wing sections, the effective deflection angle of the trailing edge was approximately five degrees at 300 V input. The predicted and measured actuation displacements agreed very well up to an input of 150 V. However, the real actuation displacement became larger than the estimated value for higher input voltages due to the material non-linearity of the lead zirconate titanate (PZT) wafer in the LIPCA. The biomimetic wing sections can be used for control surfaces of small scale unmanned aerial vehicles (UAVs).

56 citations

Patent
14 Mar 2002
TL;DR: The piezo-composite curved actuator of the present invention comprises a piezoelectric layer (10), a lightweight fiber-reinforced lower composite layer (20) with a high CTE (coefficient of thermal expansion) and a low modulus, which is placed under the pyroelectric material, and an insulator layer (24) placed on the upper composite layer.
Abstract: The piezo-composite curved actuator of the present invention comprises a piezoelectric layer (10), a lightweight fiber-reinforced lower composite layer (20) with a high CTE (coefficient of thermal expansion) and a low modulus, which is placed under the piezoelectric layer, a lightweight fiber-reinforced upper composite layer (30) with a low CTE and a high modulus, which is placed on the piezoelectric layer, and an insulator layer (23) placed between the piezoelectric layer and the upper composite layer. The piezo-composite curved actuator may further comprise an insulator layer (24) placed on the upper composite layer. Also, the piezo-composite curved actuator may further comprise insulator layers (22) placed between the insulator layer (23) and the lower composite layer (20) at the both sides of the piezoelectric layer (10).

50 citations


Cited by
More filters
01 Jan 2004
TL;DR: Comprehensive and up-to-date, this book includes essential topics that either reflect practical significance or are of theoretical importance and describes numerous important application areas such as image based rendering and digital libraries.
Abstract: From the Publisher: The accessible presentation of this book gives both a general view of the entire computer vision enterprise and also offers sufficient detail to be able to build useful applications. Users learn techniques that have proven to be useful by first-hand experience and a wide range of mathematical methods. A CD-ROM with every copy of the text contains source code for programming practice, color images, and illustrative movies. Comprehensive and up-to-date, this book includes essential topics that either reflect practical significance or are of theoretical importance. Topics are discussed in substantial and increasing depth. Application surveys describe numerous important application areas such as image based rendering and digital libraries. Many important algorithms broken down and illustrated in pseudo code. Appropriate for use by engineers as a comprehensive reference to the computer vision enterprise.

3,627 citations

Journal ArticleDOI
19 Apr 2013-Polymer
TL;DR: An up-to-date review on shape memory polymer composites with potential applications in biomedical devices, aerospace, textiles, civil engineering, bionics engineering, energy, electronic engineering, and household products is presented.

981 citations

Journal ArticleDOI
Inpil Kang1, Mark J. Schulz1, Jay Kim1, Vesselin Shanov1, Donglu Shi1 
TL;DR: In this paper, a biomimetic artificial neuron was developed by extending the length of the sensor, which is a long continuous strain sensor that has a low cost, is simple to install and is lightweight.
Abstract: A carbon nanotube polymer material was used to form a piezoresistive strain sensor for structural health monitoring applications. The polymer improves the interfacial bonding between the nanotubes. Previous single walled carbon nanotube buckypaper sensors produced distorted strain measurements because the van der Waals attraction force allowed axial slipping of the smooth surfaces of the nanotubes. The polymer sensor uses larger multi-walled carbon nanotubes which improve the strain transfer, repeatability and linearity of the sensor. An electrical model of the nanotube strain sensor was derived based on electrochemical impedance spectroscopy and strain testing. The model is useful for designing nanotube sensor systems. A biomimetic artificial neuron was developed by extending the length of the sensor. The neuron is a long continuous strain sensor that has a low cost, is simple to install and is lightweight. The neuron has a low bandwidth and adequate strain sensitivity. The neuron sensor is particularly useful for detecting large strains and cracking, and can reduce the number of channels of data acquisition needed for the health monitoring of large structures.

973 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the recent advances in nanotubes and nanotube-based composite sensors and actuators, with a particular emphasis on their electromechanical behavior is presented.

901 citations

Journal ArticleDOI
TL;DR: A detailed survey of ongoing methodologies for soft actuators, highlighting approaches suitable for nanometer- to centimeter-scale robotic applications, including both the development of new materials and composites, as well as novel implementations leveraging the unique properties of soft materials.
Abstract: This review comprises a detailed survey of ongoing methodologies for soft actuators, highlighting approaches suitable for nanometer- to centimeter-scale robotic applications. Soft robots present a special design challenge in that their actuation and sensing mechanisms are often highly integrated with the robot body and overall functionality. When less than a centimeter, they belong to an even more special subcategory of robots or devices, in that they often lack on-board power, sensing, computation, and control. Soft, active materials are particularly well suited for this task, with a wide range of stimulants and a number of impressive examples, demonstrating large deformations, high motion complexities, and varied multifunctionality. Recent research includes both the development of new materials and composites, as well as novel implementations leveraging the unique properties of soft materials.

897 citations