scispace - formally typeset
Search or ask a question
Author

Kwang S. Kim

Bio: Kwang S. Kim is an academic researcher from Ulsan National Institute of Science and Technology. The author has contributed to research in topics: Ab initio & Graphene. The author has an hindex of 97, co-authored 642 publications receiving 62053 citations. Previous affiliations of Kwang S. Kim include Asia Pacific Center for Theoretical Physics & IBM.


Papers
More filters
Journal ArticleDOI
TL;DR: One-dimensional single-crystalline rectangular nanotubes (RNTs) of 5,10,15,20-tetra(4-pyridyl)porphyrin (H(2)TPyP) are synthesized by a vaporization-condensation-recrystallization process and form by self-stacking of H(2), through hydrogen-bonding, H-pi, and pi-pi intermolecular interactions.
Abstract: Stacking up: One-dimensional single-crystalline rectangular nanotubes (RNTs) of 5,10,15,20-tetra(4-pyridyl)porphyrin (H(2)TPyP, see picture) are synthesized by a vaporization-condensation-recrystallization process. The single-crystal X-ray diffraction and selected-area electron diffraction data reveal that the H(2)TPyP RNTs form by self-stacking of H(2)TPyP units through hydrogen-bonding, H-pi, and pi-pi intermolecular interactions.

67 citations

Journal ArticleDOI
TL;DR: A novel type of palladium-catalyzed cascade cyclization-coupling reaction that proceeds with suppressed beta-hydride elimination has been found and provides an efficient synthetic route to 4-methylene-3-arylmethylpyrrolidines, which are not readily available by other routes.

67 citations

Journal ArticleDOI
TL;DR: The mechanisms and kinetics of H(2) release in metal Amidoboranes are investigated using high level ab initio calculations and kinetic simulations and it is predicted that the novel metal amidoborane-based adducts and mixtures would release H( 2) with accelerated rates as well as with enhanced reversibility.
Abstract: Group I and II metal amidoboranes have been identified as one of the promising families of materials for efficient H2 storage. However, the underlying mechanism of the dehydrogenation of these materials is not well understood. Thus, the mechanisms and kinetics of H2 release in metal amidoboranes are investigated using high level ab initio calculations and kinetic simulations. The metal plays the role of catalyst for the hydride transfer with formation of a metal hydride intermediate towards the dehydrogenation. In this process, with increasing ionic character of the metal hydride bond in the intermediate, the stability of the intermediate decreases, while the dehydrogenation process involving ionic recombination of the hydridic H with the protic H proceeds with a reduced barrier. Such correlations lead directly to a U-shaped relationship between the activation energy barrier for H2 elimination and the ionicity of metal hydride bond. Oligomerized intermediates are formed by the chain reaction of the size-driven catalytic effects of metals, competing with the non-oligomerization pathway. The kinetic rates at low temperatures are determined by the maximum barrier height in the pathway (a Λ-shaped relation), while those at moderately high temperatures are determined by most of multiple-barriers. This requires kinetic simulations. At the operating temperatures of proton exchange membrane fuel cells, the metal amidoboranes with lithium and sodium release H2 along both oligomerization and non-oligomerization paths. The sodium amidoboranes show the most accelerated rates, while others release H2 at similar rates. In addition, we predict that the novel metal amidoborane-based adducts and mixtures would release H2 with accelerated rates as well as with enhanced reversibility. This comprehensive study is useful for further developments of active metal-based better hydrogen storage materials.

66 citations

Journal ArticleDOI
TL;DR: In this article, the adiabatic electron detachment energy of the anionic water hexamer has been reported, which is correlated with the unusually intense peak observed in the photoelectron-detachment spectra.
Abstract: A number of experimental and theoretical studies have been carried out on the anionic water hexamer in the last decade. However, none of these studies have reported the adiabatic electron detachment energy. The present study employing extensive high-level ab initio calculations report the adiabatic electron detachment energy, which explains the unusual stability of the anionic water hexamer. This stability can be correlated to the unusually intense peak observed in the photoelectron-detachment spectra. It is also shown that our previously predicted pyramid structure reproduces the important characteristics of the experimental O–H vibrational spectra.

66 citations

Journal ArticleDOI
TL;DR: The single crystal structure of a micrometre-scale copper hexadecafluoro-phthalocyanine (F(16)CuPc) ribbon synthesized by vaporization-condensation-recrystallization (VCR) process was resolved by using a synchrotron X-ray diffractometer.

66 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: QUANTUM ESPRESSO as discussed by the authors is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave).
Abstract: QUANTUM ESPRESSO is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density-functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave). The acronym ESPRESSO stands for opEn Source Package for Research in Electronic Structure, Simulation, and Optimization. It is freely available to researchers around the world under the terms of the GNU General Public License. QUANTUM ESPRESSO builds upon newly-restructured electronic-structure codes that have been developed and tested by some of the original authors of novel electronic-structure algorithms and applied in the last twenty years by some of the leading materials modeling groups worldwide. Innovation and efficiency are still its main focus, with special attention paid to massively parallel architectures, and a great effort being devoted to user friendliness. QUANTUM ESPRESSO is evolving towards a distribution of independent and interoperable codes in the spirit of an open-source project, where researchers active in the field of electronic-structure calculations are encouraged to participate in the project by contributing their own codes or by implementing their own ideas into existing codes.

19,985 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations