scispace - formally typeset
Search or ask a question
Author

Kwang S. Kim

Bio: Kwang S. Kim is an academic researcher from Ulsan National Institute of Science and Technology. The author has contributed to research in topics: Ab initio & Graphene. The author has an hindex of 97, co-authored 642 publications receiving 62053 citations. Previous affiliations of Kwang S. Kim include Asia Pacific Center for Theoretical Physics & IBM.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors investigate the pathway of thinning process for transient [110] nanowires (NWs) of Ag. The result is in good agreement with experimental observations.
Abstract: We investigate the pathway of thinning process for transient [110] nanowires (NWs) of Ag. The result is in good agreement with experimental observations. An unambiguous identification of the structure of a NW requires at least two views along different directions. In the cases where two views of different NW structures are practically the same for very thin NWs which pose experimental difficulty due to small signal-to-noise ratio, our theoretical analysis helps distinguish these structures. On the basis of conductance (G) calculations vis-a-vis the structure of transient NWs, the puzzling experimental observation of fractionally quantized G values is explained by considering the existence of mixed structures for thin wires.

47 citations

Journal ArticleDOI
TL;DR: In this paper, the NH3-driven conversion mechanism of CO2 with the pronounced effect of micro-solvation was investigated using ab initio calculations and kinetic simulations, and the authors showed full details of all reaction pathways for the NH 3-driven CO2 conversion mechanism.
Abstract: Capturing CO2 by aqueous ammonia has recently received much attention due to its advantages over other state-of-the-art CO2-capture technology. Thus, understanding this CO2-capturing mechanism, which has been causing controversy, is crucial for further development toward advanced CO2 capture. The CO2 conversion mechanism in aqueous ammonia is investigated using ab initio calculations and kinetic simulations. We show full details of all reaction pathways for the NH3-driven conversion mechanism of CO2 with the pronounced effect of microsolvation. Ammonia performs multiple roles as reactant, catalyst, base, and product controller. Both carbamic and carbonic acids are formed by the ammonia-driven trimolecular mechanism. Ammonia in microsolvation makes the formation of carbamic acid kinetically preferred over carbonic acid. As the concentration of CO2 increases, the dominant product becomes carbonic acid. The conversion from carbamic acid into carbonic acid occurs through the decomposition−recombination pathwa...

47 citations

Journal ArticleDOI
TL;DR: At low temperatures, the material has two distinct types with low and high surface areas; however, activation at elevated temperatures drives off the low surface area carbon, leaving behind the porous high surface area activated carbon.
Abstract: An activated carbon material derived from waste coffee grounds is shown to be an effective and stable medium for methane storage. The sample activated at 900 °C displays a surface area of 1040.3 m(2) g(-1) and a micropore volume of 0.574 cm(3) g(-1) and exhibits a stable CH4 adsorption capacity of ∼4.2 mmol g(-1) at 3.0 MPa and a temperature range of 298 ± 10 K. The same material exhibits an impressive hydrogen storage capacity of 1.75 wt% as well at 77 K and 100 kPa. Here, we also propose a mechanism for the formation of activated carbon from spent coffee grounds. At low temperatures, the material has two distinct types with low and high surface areas; however, activation at elevated temperatures drives off the low surface area carbon, leaving behind the porous high surface area activated carbon.

47 citations

Journal ArticleDOI
TL;DR: Using Urry's gramicidin A (GA) atomic coordinates and ab into calculations, the interaction energies of a K+ ion with GA are examined and the values of the fitting parameters are obtained for 6-12-1 atom-atom pair potentials.

47 citations

Journal ArticleDOI
TL;DR: In this article, the local structure and magnetization of Co ions doped in TiO2 anatase was investigated and the formation energy of the pair of substitutional Co ions indicates that they have a tendency to cluster; but clustering has no noticeable effect on the low-spin state of Co.

47 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: QUANTUM ESPRESSO as discussed by the authors is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave).
Abstract: QUANTUM ESPRESSO is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density-functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave). The acronym ESPRESSO stands for opEn Source Package for Research in Electronic Structure, Simulation, and Optimization. It is freely available to researchers around the world under the terms of the GNU General Public License. QUANTUM ESPRESSO builds upon newly-restructured electronic-structure codes that have been developed and tested by some of the original authors of novel electronic-structure algorithms and applied in the last twenty years by some of the leading materials modeling groups worldwide. Innovation and efficiency are still its main focus, with special attention paid to massively parallel architectures, and a great effort being devoted to user friendliness. QUANTUM ESPRESSO is evolving towards a distribution of independent and interoperable codes in the spirit of an open-source project, where researchers active in the field of electronic-structure calculations are encouraged to participate in the project by contributing their own codes or by implementing their own ideas into existing codes.

19,985 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations