scispace - formally typeset
Search or ask a question
Author

Kwang S. Kim

Bio: Kwang S. Kim is an academic researcher from Ulsan National Institute of Science and Technology. The author has contributed to research in topics: Ab initio & Graphene. The author has an hindex of 97, co-authored 642 publications receiving 62053 citations. Previous affiliations of Kwang S. Kim include Asia Pacific Center for Theoretical Physics & IBM.


Papers
More filters
Journal ArticleDOI
TL;DR: The ionic dissociation of salts was examined with a theoretical study of KX hydrated by up to six water molecules KX(H2O)n and single point energy calculations using the coupled cluster theory with single, double, and perturbative triple excitations were performed on the MP2 optimized geometries.
Abstract: The ionic dissociation of salts was examined with a theoretical study of KX (X=F,Cl,Br,I) hydrated by up to six water molecules KX(H2O)n (n=1-6). Calculations were done using the density functional theory and second order Moller-Plesset (MP2) perturbational theory. To provide more conclusive results, single point energy calculations using the coupled cluster theory with single, double, and perturbative triple excitations were performed on the MP2 optimized geometries. The dissociation feature of the salts was examined in terms of K-X bond lengths and K-X stretch frequencies. In general, the successive incorporation of water molecules to the cluster lengthens the K-X distance, and consequently the corresponding frequency decreases. Near 0 K, the KX salt ion pairs can be partly separated by more than five water molecules. The pentahydrated KX salt is partly dissociated, though these partly dissociated structures are almost isoenergetic to the undissociated ones for KFKCl. For the hexahydrated complexes, KF is undissociated, KClKBr is partly dissociated, and KI is dissociated (though this dissociated structure is nearly isoenergetic to a partly dissociated one). On the other hand, at room temperature, the penta- and hexahydrated undissociated structures which have less hydrogen bonds are likely to be more stable than the partly dissociated ones because of the entropy effect. Therefore, the dissociation at room temperature could take place for higher clusters than the hexahydrated ones.

39 citations

Journal ArticleDOI
TL;DR: A Monte Carlo integration of the second-order many-body perturbation (MP2) corrections to energies and self-energies eliminates the usual computational bottleneck of the MP2 algorithm, thereby achieving near-linear size dependence of its operation cost, a negligible core and disk memory cost, and a naturally parallel computational kernel.
Abstract: A Monte Carlo (MC) integration of the second-order many-body perturbation (MP2) corrections to energies and self-energies eliminates the usual computational bottleneck of the MP2 algorithm (i.e., the basis transformation of two-electron integrals), thereby achieving near-linear size dependence of its operation cost, a negligible core and disk memory cost, and a naturally parallel computational kernel. In this method, the correlation correction expressions are recast into high-dimensional integrals, which are approximated as the sums of integrands evaluated at coordinates of four electron random walkers guided by a Metropolis algorithm for importance sampling. The gravest drawback of this method, however, is the inevitable statistical uncertainties in its results, which decay slowly as the inverse square-root of the number of MC steps. We propose an algorithm that can increase the number of MC sampling points in each MC step by many orders of magnitude by having 2m electron walkers (m > 2) and then using m(m - 1)/2 permutations of their coordinates in evaluating the integrands. Hence, this algorithm brings an O(m(2))-fold increase in the number of MC sampling points at a mere O(m) additional cost of propagating redundant walkers, which is a net O(m)-fold enhancement in sampling efficiency. We have demonstrated a large performance increase in the Monte Carlo MP2 calculations for the correlation energies of benzene and benzene dimer as well as for the correlation corrections to the energy, ionization potential, and electron affinity of C60. The calculation for C60 has been performed with a parallel implementation of this method running on up to 400 processors of a supercomputer, yielding an accurate prediction of its large electron affinity, which makes its derivative useful as an electron acceptor in bulk heterojunction organic solar cells.

39 citations

Journal ArticleDOI
TL;DR: In this article, the electronic and magnetic structures of MoS2 nanotubes were studied by using a first-principles method and various kinds of defects such as substitution and vacancy were examined for triggering spin magnetic moments toward one-dimensional diluted magnetic semiconductors.
Abstract: We have studied the electronic and magnetic structures of MoS2 nanotubes by using a first-principles method. Various kinds of defects such as substitution and vacancy are examined for triggering spin magnetic moments toward one-dimensional diluted magnetic semiconductors. Our results suggest that the presence of impurity states within the energy gap and its large contribution to the density of states at the Fermi level are the key factors in inducing a magnetic moment. In particular, the nanotube curvature turns out to affect the energy level of impurity states, which can be exploited for tailoring magnetic properties. Also, 3d transition metal impurities (V, Mn, Fe, and Co atoms) on a Mo site can create large magnetic moments.

39 citations

Journal ArticleDOI
TL;DR: In this article, the structure and energy of adsorbed water on the NaCl(001) surface using density-functional calculations within the generalized gradient approximation was studied and a new adsorption structure for the $c(4\ifmmode\times\else\texttimes\fi{}2)$ water bilayer was predicted.
Abstract: We have studied the structure and energetics of adsorbed water on the NaCl(001) surface using density-functional calculations within the generalized gradient approximation. We predict a new adsorption structure for the $c(4\ifmmode\times\else\texttimes\fi{}2)$ water bilayer which is energetically favored over the previous puckered hexagonal $c(4\ifmmode\times\else\texttimes\fi{}2)$ structure. Our calculations show that the $1\ifmmode\times\else\texttimes\fi{}1$ monolayer structure (wherein every water molecule binds to each surface cation) is metastable, thereby suggesting that the $1\ifmmode\times\else\texttimes\fi{}1$ structure would be transformed to the more stable $c(4\ifmmode\times\else\texttimes\fi{}2)$ structure which has an increased H-bond interactions between water molecules.

38 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: QUANTUM ESPRESSO as discussed by the authors is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave).
Abstract: QUANTUM ESPRESSO is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density-functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave). The acronym ESPRESSO stands for opEn Source Package for Research in Electronic Structure, Simulation, and Optimization. It is freely available to researchers around the world under the terms of the GNU General Public License. QUANTUM ESPRESSO builds upon newly-restructured electronic-structure codes that have been developed and tested by some of the original authors of novel electronic-structure algorithms and applied in the last twenty years by some of the leading materials modeling groups worldwide. Innovation and efficiency are still its main focus, with special attention paid to massively parallel architectures, and a great effort being devoted to user friendliness. QUANTUM ESPRESSO is evolving towards a distribution of independent and interoperable codes in the spirit of an open-source project, where researchers active in the field of electronic-structure calculations are encouraged to participate in the project by contributing their own codes or by implementing their own ideas into existing codes.

19,985 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations