scispace - formally typeset
Search or ask a question
Author

Kwang S. Kim

Bio: Kwang S. Kim is an academic researcher from Ulsan National Institute of Science and Technology. The author has contributed to research in topics: Ab initio & Graphene. The author has an hindex of 97, co-authored 642 publications receiving 62053 citations. Previous affiliations of Kwang S. Kim include Asia Pacific Center for Theoretical Physics & IBM.


Papers
More filters
Journal ArticleDOI
16 Jul 2020
TL;DR: In this paper, the authors elucidate the atomistic origin of efficient electron extraction and long stability of perovskite solar cells (PSCs) through the analysis of band alignment, carrier injection, and interfacial defects in the SnO2/MAPbI3(MA)=CH3NH3+) interface using unprecedentedly high level of first-principles calculations at the PBE0, + spin-orbit-coupling and dispersion-correction level for all possible terminations and MA directions.
Abstract: SnO2 electron transport layer (ETL) has been spotlighted with its excellent electron extraction and stability over TiO2 ETL for perovskite solar cells (PSCs), rapidly approaching the highest power conversion efficiency. Thus, how to boost the performance of ETL is of utmost importance and of urgent need in developing more efficient PSCs. Here we elucidate the atomistic origin of efficient electron extraction and long stability of SnO2-based PSCs through the analysis of band alignment, carrier injection, and interfacial defects in the SnO2/MAPbI3(MA = CH3NH3+) interface using unprecedentedly high level of first-principles calculations at the PBE0 + spin-orbit-coupling + dispersion-correction level for all possible terminations and MA directions. We find that Sn-s orbital plays a crucial role in carrier injection and defect tolerance. SnO2/MAPbI3 shows favorable conduction band alignments at both MAI- and PbI2-terminations, which makes the solar cell performance of SnO2/MAPbI3 excel that of TiO2/MAPbI3. Different electron transfer mechanisms of dipole interaction and orbital hybridization at the MAI- and PbI2-terminations indicate that post-transition metal (sp valence) oxide ETLs would outperform transition metal (d valence) oxide ETLs for PSCs.

31 citations

Journal ArticleDOI
TL;DR: In this article, the authors studied the electronic structure and conductivity of reduced-graphene-oxide (HT-RGO) using nonequilibrium Green's function theory in tight binding and density functional theory schemes.
Abstract: It is known that a high-temperature reduced-graphene-oxide (HT-RGO) exhibits 3 orders of magnitude increase in the conductivity compared to original graphene oxide but still 3 orders of magnitude below the value of pristine graphene. Substantial amounts of defects that remain in the reduced sample are responsible for the inferior transport quality. On the basis of the defect model which involves C vacancies and the O substitution of edge C atoms, we study the electronic structure and conductivity of HT-RGO using nonequilibrium Green's function theory in tight binding and density functional theory schemes. It is shown that electrons are localized within 10–40 nm due to vacancy defects. We also discuss the transport behavior via such localized carriers in connection with recent experimental findings.

31 citations

Journal ArticleDOI
TL;DR: The AIMD simulation results indicate that the rearrangement of the complex is closely related to that of e(-)(H(2)O)(3), whereas the role of the halide anion is not as important.
Abstract: Upon excitation of Cl(-)(H(2)O)(3) and I(-)(H(2)O)(3) clusters, the electron transfers from the anionic precursor to the solvent, and then the excess electron is stabilized by polar solvent molecules. This process has been investigated using ab initio molecular dynamics (AIMD) simulations of excited states of Cl(-)(H(2)O)(3) and I(-)(H(2)O)(3) clusters. The AIMD simulation results of Cl(-)(H(2)O)(3) and I(-)(H(2)O)(3) are compared, and they are found to be similar. Because the role of the halogen atom in the photoexcitation mechanism is controversial, we also carried out AIMD simulations for the ground-state bare excess electron -- water trimer [e(-)(H(2)O)(3)] at 300 K, the results of which are similar to those for the excited state of X(-)(H(2)O)(3) with zero kinetic energy at the initial excitation. This indicates that the rearrangement of the complex is closely related to that of e(-)(H(2)O)(3), whereas the role of the halide anion is not as important.

31 citations

Journal ArticleDOI
TL;DR: In this article, the optimal structures, binding energies, and harmonic vibrational frequencies of clusters containing a substituted benzene molecule microsolvated by four water molecules, termed as π-(water tetramer) clusters, were evaluated at the second order perturbation level of theory (MP2) using both the 6-31+G* and aug-cc-pVDZ basis sets.
Abstract: The optimal structures, binding energies, and harmonic vibrational frequencies of clusters containing a substituted benzene molecule microsolvated by four water molecules, termed as π-(water tetramer) clusters (π: p-difluorobenzene, fluorobenzene, benzene, toluene) have been evaluated at the second order perturbation level of theory (MP2) using both the 6-31+G* and aug-cc-pVDZ basis sets. In sharp contrast to the complexes of smaller water clusters with these π systems, wherein the water subcluster is most strongly bound to toluene, the water tetramer is most strongly bound to fluorobenzene. This exceptionally high binding energy results from both a π⋅⋅⋅OH H-bond and a competing σ F⋅⋅⋅OH bond between the water tetramer moiety and the aromatic molecule. The magnitudes of the many-body energy terms and their contribution to the binding energies of these π-(water tetramer) systems indicates that the contributions of three- and higher-order terms are much smaller when compared to the neutral water clusters. The two-body terms associated with the π- and σ-type of interaction indicates that in both the fluorobenzene and p-difluorobenzene complexes, the increase in the size of the water cluster enhances the π-H-bonding interaction and weakens the σ F⋅⋅⋅H interaction. This observation is in consonance with the calculated and experimentally observed redshifts of the OH vibrational frequencies. Thus, with an increase in the size of a water cluster bound to the fluorinated π system, there is a lowering of the redshift induced by the σ F⋅⋅⋅H interaction and an increase in the redshift due to the π-H interaction. The calculated redshift of the π H-bonded OH mode is very much dependent on the basis set, with larger basis sets yielding shifts which are in better agreement with the experimentally determined shifts.

31 citations

Journal ArticleDOI
TL;DR: A direct mixed quantum-classical dynamics approach is presented, which combines two new computational methodologies and has been applied to the excited-state nonadiabatic dynamics of the trans-penta-2,4-dieniminium cation.
Abstract: In this work, a direct mixed quantum-classical dynamics approach is presented, which combines two new computational methodologies. The nuclear dynamics is solved by the decoherence-induced surface hopping based on the exact factorization (DISH-XF) method, which is derived from the exact factorization of the electronic-nuclear wave function and correctly describes quantum decoherence phenomena. The state-interaction state-averaged spin-restricted ensemble-referenced Kohn-Sham (SI-SA-REKS, or SSR, for brevity) electronic structure method is based on ensemble density functional theory (eDFT) and provides correct description of real crossings between the ground and excited Born–Oppenheimer electronic states. The new combined approach has been applied to the excited-state nonadiabatic dynamics of the trans-penta-2,4-dieniminium cation (PSB3). The predicted S1 lifetime of trans-PSB3, τ = 99 ± 51 fs, and the quantum yield of the cis conformation, ϕ = 0.63, agree with the results obtained previously in nonadiabat...

31 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: QUANTUM ESPRESSO as discussed by the authors is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave).
Abstract: QUANTUM ESPRESSO is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density-functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave). The acronym ESPRESSO stands for opEn Source Package for Research in Electronic Structure, Simulation, and Optimization. It is freely available to researchers around the world under the terms of the GNU General Public License. QUANTUM ESPRESSO builds upon newly-restructured electronic-structure codes that have been developed and tested by some of the original authors of novel electronic-structure algorithms and applied in the last twenty years by some of the leading materials modeling groups worldwide. Innovation and efficiency are still its main focus, with special attention paid to massively parallel architectures, and a great effort being devoted to user friendliness. QUANTUM ESPRESSO is evolving towards a distribution of independent and interoperable codes in the spirit of an open-source project, where researchers active in the field of electronic-structure calculations are encouraged to participate in the project by contributing their own codes or by implementing their own ideas into existing codes.

19,985 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations