scispace - formally typeset
Search or ask a question
Author

Kwang-Yong Kim

Other affiliations: KAIST
Bio: Kwang-Yong Kim is an academic researcher from Inha University. The author has contributed to research in topics: Heat transfer & Shape optimization. The author has an hindex of 42, co-authored 413 publications receiving 6503 citations. Previous affiliations of Kwang-Yong Kim include KAIST.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors employed multiple surrogates based on the same training data to offer approximations from alternative modeling viewpoints, such as polynomial response surface approximation, Kriging, and radial basis neural network.
Abstract: A major issue in surrogate model-based design optimization is the modeling fidelity. An effective approach is to employ multiple surrogates based on the same training data to offer approximations from alternative modeling viewpoints. This approach is employed in a compressor blade shape optimization using the NASA rotor 37 as the case study. The surrogate models considered include polynomial response surface approximation, Kriging, and radial basis neural network. In addition, a weighted average model based on global error measures is constructed. Sequential quadratic programming is used to search the optimal point based on these alternative surrogates. Three design variables characterizing the blade regarding sweep, lean, and skew are selected along with the three-level full factorial approach for design of experiment. The optimization is guided by three objectives aimed at maximizing the adiabatic efficiency, as well as the total pressure and total temperature ratios. The optimized compressor blades yield lower losses by moving the separation line toward the downstream direction. The optima for total pressure and total temperature ratios are similar, but the optimum for adiabatic efficiency is located far from them. It is found that the most accurate surrogate did not always lead to the best design. This demonstrated that using multiple surrogates can improve the robustness of the optimization at a minimal computational cost.

199 citations

Journal ArticleDOI
TL;DR: In this paper, a numerical investigation on mixing and flow structures in microchannels with different geometries: zig-zag, square-wave, and curved was conducted, where geometric parameters, such as the cross-section of the channel, channel height, axial length, and number of pitches, were kept constant.

183 citations

Journal ArticleDOI
TL;DR: In this paper, a new passive micromixer based on the concept of unbalanced splits and cross-collisions of fluid streams is designed and fabricated, which is composed of two sub-channels of unequal widths which repeatedly undergo splitting and recombination.
Abstract: A new passive micromixer based on the concept of unbalanced splits and cross-collisions of fluid streams is designed and fabricated. Experimental and numerical studies have been carried out on the micromixer at Reynolds numbers ranging from 10 to 80. The three-dimensional Navier–Stokes equations have been used to analyze the mixing and flow behavior of the micromixer, which is composed of two sub-channels of unequal widths which repeatedly undergo splitting and recombination. The difference between the mass flow rates in the two sub-channels creates an unbalanced collision of the two fluid streams. Mixing is mainly due to the combined effect of unbalanced collisions of the fluid streams and Dean vortices. The micromixer shows interesting mixing behavior for different ratios of the widths of the two split sub-channels. The sub-channels wherein the major sub-channel is twice as wide as the minor sub-channel exhibit the highest mixing performance at Reynolds numbers larger than 40. The results show the lowest mixing performance for the case of uniform width, where balanced collisions occur.

149 citations

Journal ArticleDOI
TL;DR: In this article, an experimental analysis of train-induced unsteady flow is conducted on a 1/20 scale model tunnel and the pressure and air velocity variations with time are presented.

140 citations

Journal ArticleDOI
TL;DR: In this article, the mixing and fluid flow in a new design of passive micromixer employing several cylindrical obstructions within a curved microchannel was analyzed using Navier-Stokes equations and the diffusion equation between two working fluids.
Abstract: A numerical investigation of the mixing and fluid flow in a new design of passive micromixer employing several cylindrical obstructions within a curved microchannel is presented in this work. Mixing in the channels is analyzed using Navier–Stokes equations and the diffusion equation between two working fluids (water and ethanol) for Reynolds numbers from 0.1 to 60. The proposed micromixer shows far better mixing performance than a T-micromixer with circular obstructions and a simple curved micromixer. The effects of cross-sectional shape, height, and placement of the obstructions on mixing performance and the pressure drop of the proposed micromixer are evaluated.

127 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal Article
TL;DR: This book by a teacher of statistics (as well as a consultant for "experimenters") is a comprehensive study of the philosophical background for the statistical design of experiment.
Abstract: THE DESIGN AND ANALYSIS OF EXPERIMENTS. By Oscar Kempthorne. New York, John Wiley and Sons, Inc., 1952. 631 pp. $8.50. This book by a teacher of statistics (as well as a consultant for \"experimenters\") is a comprehensive study of the philosophical background for the statistical design of experiment. It is necessary to have some facility with algebraic notation and manipulation to be able to use the volume intelligently. The problems are presented from the theoretical point of view, without such practical examples as would be helpful for those not acquainted with mathematics. The mathematical justification for the techniques is given. As a somewhat advanced treatment of the design and analysis of experiments, this volume will be interesting and helpful for many who approach statistics theoretically as well as practically. With emphasis on the \"why,\" and with description given broadly, the author relates the subject matter to the general theory of statistics and to the general problem of experimental inference. MARGARET J. ROBERTSON

13,333 citations

01 Jan 2016
TL;DR: The numerical heat transfer and fluid flow is universally compatible with any devices to read and is available in the authors' digital library an online access to it is set as public so you can get it instantly.
Abstract: Thank you for reading numerical heat transfer and fluid flow. Maybe you have knowledge that, people have search numerous times for their favorite books like this numerical heat transfer and fluid flow, but end up in infectious downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they cope with some malicious virus inside their computer. numerical heat transfer and fluid flow is available in our digital library an online access to it is set as public so you can get it instantly. Our books collection spans in multiple countries, allowing you to get the most less latency time to download any of our books like this one. Merely said, the numerical heat transfer and fluid flow is universally compatible with any devices to read.

1,531 citations

Journal ArticleDOI
Yaochu Jin1
TL;DR: This paper provides a concise overview of the history and recent developments in surrogate-assisted evolutionary computation and suggests a few future trends in this research area.
Abstract: Surrogate-assisted, or meta-model based evolutionary computation uses efficient computational models, often known as surrogates or meta-models, for approximating the fitness function in evolutionary algorithms. Research on surrogate-assisted evolutionary computation began over a decade ago and has received considerably increasing interest in recent years. Very interestingly, surrogate-assisted evolutionary computation has found successful applications not only in solving computationally expensive single- or multi-objective optimization problems, but also in addressing dynamic optimization problems, constrained optimization problems and multi-modal optimization problems. This paper provides a concise overview of the history and recent developments in surrogate-assisted evolutionary computation and suggests a few future trends in this research area.

1,072 citations

Journal ArticleDOI
TL;DR: This paper compares Maximum Likelihood Estimation (MLE) and Cross-Validation (CV) parameter estimation methods for selecting a kriging model’s parameters given its form and and an R 2 of prediction and the corrected Akaike Information Criterion for assessing the quality of the created kriged model, permitting the comparison of different forms of a k Riging model.
Abstract: The use of kriging models for approximation and metamodel-based design and optimization has been steadily on the rise in the past decade. The widespread usage of kriging models appears to be hampered by (1) the lack of guidance in selecting the appropriate form of the kriging model, (2) computationally efficient algorithms for estimating the model’s parameters, and (3) an effective method to assess the resulting model’s quality. In this paper, we compare (1) Maximum Likelihood Estimation (MLE) and Cross-Validation (CV) parameter estimation methods for selecting a kriging model’s parameters given its form and (2) and an R 2 of prediction and the corrected Akaike Information Criterion for assessing the quality of the created kriging model, permitting the comparison of different forms of a kriging model. These methods are demonstrated with six test problems. Finally, different forms of kriging models are examined to determine if more complex forms are more accurate and easier to fit than simple forms of kriging models for approximating computer models.

833 citations