scispace - formally typeset
Search or ask a question
Author

Kyeong Soo Kim

Other affiliations: Stanford University, Swansea University, Alcatel-Lucent  ...read more
Bio: Kyeong Soo Kim is an academic researcher from Xi'an Jiaotong-Liverpool University. The author has contributed to research in topics: Wireless sensor network & Time-division multiplexing. The author has an hindex of 19, co-authored 106 publications receiving 1511 citations. Previous affiliations of Kyeong Soo Kim include Stanford University & Swansea University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors proposed a next-generation hybrid WDM/TDM optical access network architecture called Stanford University aCCESS or SUCCESS, which is based on a collector ring and several distribution stars connecting the CO and the users.
Abstract: In this paper, the authors propose a next-generation hybrid WDM/TDM optical access network architecture called Stanford University aCCESS or SUCCESS. This architecture provides practical migration steps from current-generation time-division multiplexing (TDM)-passive optical network (PONs) to future WDM optical access networks. The architecture is backward compatible for users on existing TDM-PONs, while simultaneously capable of providing upgraded high-bandwidth services to new users on DWDM-PONs through advanced WDM techniques. The SUCCESS architecture is based on a collector ring and several distribution stars connecting the CO and the users. A semipassive configuration of the Remote Nodes (RNs) enables protection and restoration, making the network resilient to power failures. A novel design of the OLT and DWDM-PON ONUs minimizes the system cost considerably: 1) tunable lasers and receivers at the OLT are shared by all ONUs on the network to reduce the transceiver count and 2) the fast tunable lasers not only generate downstream data traffic but also provide DWDM-PON ONUs with optical CW bursts for their upstream data transmission. Results from an experimental system testbed support the feasibility of the proposed SUCCESS architecture. Also, simulation results of the first SUCCESS DWDM-PON MAC protocol verify that it can efficiently provide bidirectional transmission between the OLT and ONUs over multiple wavelengths with a small number of tunable transmitters and receivers.

246 citations

Journal ArticleDOI
01 Dec 2018
TL;DR: The proposed scalable DNN architecture for multi-building and multi-floor indoor localization based on Wi-Fi fingerprinting can achieve near state-of-the-art performance with just a single DNN and enables the implementation with lower complexity and energy consumption at mobile devices.
Abstract: One of the key technologies for future large-scale location-aware services covering a complex of multi-story buildings is a scalable indoor localization technique. In this paper, we report the current status of our investigation on the use of deep neural networks (DNNs) for the scalable building/floor classification and floor-level position estimation based on Wi-Fi fingerprinting. Exploiting the hierarchical nature of the building/floor estimation and floor-level coordinates estimation of a location, we propose a new DNN architecture consisting of a stacked autoencoder for the reduction of feature space dimension and a feed-forward classifier for multi-label classification of building/floor/location, on which the multi-building and multi-floor indoor localization system based on Wi-Fi fingerprinting is built. We evaluate the performance of building/floor estimation and floor-level coordinates estimation of a given location using the UJIIndoorLoc dataset covering three buildings with four or five floors in the Jaume I University (UJI) campus, Spain. Experimental results demonstrate the feasibility of the proposed DNN-based indoor localization system, which can provide near state-of-the-art performance using a single DNN. The proposed scalable DNN architecture for multi-building and multi-floor indoor localization based on Wi-Fi fingerprinting can achieve near state-of-the-art performance with just a single DNN and enables the implementation with lower complexity and energy consumption at mobile devices.

144 citations

Proceedings ArticleDOI
01 Oct 2006
TL;DR: A summary of current efforts in access networks research, focusing in particular on fiber optic solutions, and presents SUCCESS-LCO, a spectral-shaping line coding technique that enables a cost-effective shorter-term capacity upgrade of existing TDM-PONs.
Abstract: The last mile continues to be a major bottleneck in the Internet. Its low bandwidth and flexibility prevents the deployment of new services and the development of new applications. In this paper we present a summary of current efforts in access networks research, focusing in particular on fiber optic solutions. We present the Stanford University aCCESS (SUCCESS) initiative within the Photonics & Networking Research Laboratory (PNRL). As part of this initiative, two novel network architectures have been developed, SUCCESS-HPON and SUCCESS-DWA, which propose a smooth migration path from current TDM-PONs to future higher bandwidth, cost-efficient, scalable WDM-PONs. In addition, we present SUCCESS-LCO, a spectral-shaping line coding technique that enables a cost-effective shorter-term capacity upgrade of existing TDM-PONs. We discuss as well what we believe are the main open research areas in optical access networks.

143 citations

Journal ArticleDOI
TL;DR: TheSUCCESS-HPON is presented, a next-generation hybrid WDM/TDM optical access architecture that focuses on providing a smooth migration path from current TDM-Pons to future WDM-PONs and investigates the possible role of WDM in access networks and the associated issues.
Abstract: Optical access networks are considered to be a definite solution to the problem of upgrading current congested access networks to ones capable of delivering future broadband integrated services. However, the high deployment and maintenance cost of traditional point-to-point architectures is a major economic barrier. Current TDM-PON architectures are economically feasible, but bandwidth-limited. In this article we first discuss the possible role of WDM in access networks and investigate the associated issues. We then present the Stanford University Access Hybrid WDM/TDM Passive Optical Network (SUCCESS-HPON), a next-generation hybrid WDM/TDM optical access architecture that focuses on providing a smooth migration path from current TDM-PONs to future WDM-PONs. The first testbed for this architecture is described, along with the experimental results obtained, including feasibility of bidirectional transmission on the same wavelength on the same fiber for access networks and ONU modulation of upstream data on continuous waves provided by the OLT, eliminating the need for tunable components at the ONUs. The development of a second testbed and the issues it will address, including the implementability of the SUCCESS-HPON MAC protocol and scheduling algorithms, are also described.

116 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review and compare the current PON-based FTTH solutions, ATM-PON (APON) and Ethernet PON (EPON), and provide a possible evolution scenario to future WDMPON.

100 citations


Cited by
More filters
Journal Article
TL;DR: The first direct detection of gravitational waves and the first observation of a binary black hole merger were reported in this paper, with a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ.
Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160) Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

4,375 citations

Book
01 Aug 1996
TL;DR: Fuzzy sets as mentioned in this paper are a class of classes in which there may be grades of membership intermediate between full membership and non-membership, i.e., a fuzzy set is characterized by a membership function which assigns to each object its grade of membership.
Abstract: The notion of fuzziness as defined in this paper relates to situations in which the source of imprecision is not a random variable or a stochastic process, but rather a class or classes which do not possess sharply defined boundaries, e.g., the “class of bald men,” or the “class of numbers which are much greater than 10,” or the “class of adaptive systems,” etc. A basic concept which makes it possible to treat fuzziness in a quantitative manner is that of a fuzzy set, that is, a class in which there may be grades of membership intermediate between full membership and non-membership. Thus, a fuzzy set is characterized by a membership function which assigns to each object its grade of membership (a number lying between 0 and 1) in the fuzzy set. After a review of some of the relevant properties of fuzzy sets, the notions of a fuzzy system and a fuzzy class of systems are introduced and briefly analyzed. The paper closes with a section dealing with optimization under fuzzy constraints in which an approach to...

885 citations

Journal ArticleDOI
TL;DR: Incorporating wavelength-division multiplexing (WDM) in a PON allows one to support much higher bandwidth compared to the standard PON, which operates in the traditional copper-based networks.
Abstract: Feature Issue on Optical Access Networks (OAN) The passive optical network (PON) is an optical fiber based network architecture, which can provide much higher bandwidth in the access network compared to traditional copper-based networks. Incorporating wavelength-division multiplexing (WDM) in a PON allows one to support much higher bandwidth compared to the standard PON, which operates in the "single-wavelength mode" where one wavelength is used for upstream transmission and a separate one is used for downstream transmission. We present a comprehensive review of various aspects of WDM-PONs proposed in the literature. This includes enabling device technologies for WDM-PONs and network architectures, as well as the corresponding protocols and services that may be deployed on a WDM-PON. The WDM-PON will become a revolutionary and scalable broadband access technology that will provide high bandwidth to end users.

507 citations

Journal ArticleDOI
TL;DR: A summary of current efforts in access networks research, focusing in particular on fiber optic solutions, and presents SUCCESS-LCO, a spectral-shaping line coding technique that enables a cost-effective shorter-term capacity upgrade of existing TDM-PONs.
Abstract: The main bandwidth bottleneck in today's networks is in the access segment. To address that bottleneck, broadband fiber access technologies such as passive optical networks (PONs) are an indispensable solution. The industry has selected time-division multiplexing (TDM) for current PON deployments. To satisfy future bandwidth demands, however, next-generation PON systems are being investigated to provide even higher performance. In this paper, we first review current TDM-PONs; we designate them as generation C. Next, we review next-generation PON systems, which we categorize into C+1 and C+2 generations. We expect C+1 systems to provide economic near-term bandwidth upgrade by overlaying new services on current TDM-PONs. For the long term, C+2 systems will provide more dramatic system improvement using wavelength division multiplexing technologies. Some C+2 architectures require new infrastructures and/or equipment, whereas others employ a more evolutionary approach. We also review key enabling components and technologies for C+1 and C+2 generations and point out important topics for future research.

396 citations

Journal ArticleDOI
TL;DR: This paper presents a probabilistic analysis of the survivability of NG-PONs and hybrid fiber-wireless (FiWi) access networks, taking both optical and wireless protection into account, and proposes different selection schemes to wirelessly upgrade a subset of ONUs.
Abstract: Passive optical networks (PONs) are currently evolving into next-generation PONs (NG-PONs) which aim at achieving higher data rates, wavelength channel counts, number of optical network units (ONUs), and extended coverage compared to their conventional counterparts. Due to the increased number of stages and ONUs, NG-PONs face significant challenges to provide the same level of survivability like conventional PONs without exceeding the budget constraints of cost-sensitive access networks. Toward this end, partial optical protection, in combination with interconnecting a subset of ONUs through a wireless mesh network (WMN) front-end, are promising solutions to render NG-PONs survivable in a cost-effective manner. In this paper, we present a probabilistic analysis of the survivability of NG-PONs and hybrid fiber-wireless (FiWi) access networks, taking both optical and wireless protection into account. In addition, we propose different selection schemes to wirelessly upgrade a subset of ONUs, and investigate their performance for a wide range of fiber link failure scenarios and different NG-PON topologies.

257 citations