scispace - formally typeset
Search or ask a question
Author

Kyle A. Rasbach

Other affiliations: Harvard University
Bio: Kyle A. Rasbach is an academic researcher from Medical University of South Carolina. The author has contributed to research in topics: Mitochondrial biogenesis & Skeletal muscle. The author has an hindex of 11, co-authored 14 publications receiving 4098 citations. Previous affiliations of Kyle A. Rasbach include Harvard University.

Papers
More filters
Journal ArticleDOI
26 Jan 2012-Nature
TL;DR: This article showed that PGC1α expression in muscle stimulates an increase in expression of FNDC5, a membrane protein that is cleaved and secreted as a newly identified hormone, irisin.
Abstract: Exercise benefits a variety of organ systems in mammals, and some of the best-recognized effects of exercise on muscle are mediated by the transcriptional co-activator PPAR-γ co-activator-1 α (PGC1-α). Here we show in mouse that PGC1-α expression in muscle stimulates an increase in expression of FNDC5, a membrane protein that is cleaved and secreted as a newly identified hormone, irisin. Irisin acts on white adipose cells in culture and in vivo to stimulate UCP1 expression and a broad program of brown-fat-like development. Irisin is induced with exercise in mice and humans, and mildly increased irisin levels in the blood cause an increase in energy expenditure in mice with no changes in movement or food intake. This results in improvements in obesity and glucose homeostasis. Irisin could be therapeutic for human metabolic disease and other disorders that are improved with exercise.

3,338 citations

Journal ArticleDOI
07 Dec 2012-Cell
TL;DR: A form of PGC-1α (PGC-1 α4) that results from alternative promoter usage and splicing of the primary transcript is identified that regulates and coordinates factors involved in skeletal muscle hypertrophy.

519 citations

Journal ArticleDOI
TL;DR: It is shown that the unfolded protein response (UPR) is activated in skeletal muscle during exercise and adapts skeletal muscle to exercise training and modulation of the UPR through PGC1α represents an alternative avenue to improve skeletal muscle function and achieve metabolic benefits.

261 citations

Journal ArticleDOI
TL;DR: A series of substituted isoflavones that produce mitochondrial biogenesis through PGC1α and increased SIRT1 activity and/or expression, independently of the estrogen receptor are identified.
Abstract: Mitochondrial damage is often both the cause and outcome of cell injury resulting from a variety of toxic insults, hypoxia, or trauma. Increasing mitochondrial biogenesis after renal proximal tubular cell (RPTC) injury accelerated the recovery of mitochondrial and cellular functions (Biochem Biophys Res Commun 355:734-739, 2007). However, few pharmacological agents are known to increase mitochondrial biogenesis. We report that daidzein, genistein, biochanin A, formononetin, 3-(2',4'-dichlorophenyl)-7-hydroxy-4H-chromen-4-one (DCHC), 7-hydroxy-4H-chromen-4-one (7-C), 4'7-dimethoxyisoflavone (4',7-D), and 5,7,4'-trimethoxyisoflavone (5,7,4'-T) increased peroxisome proliferator-activated receptor gamma coactivator (PGC)-1alpha expression and resulted in mitochondrial biogenesis as indicated by increased expression of ATP synthase beta and ND6, and 1.5-fold increases in respiration and ATP in RPTC. Inhibition of estrogen receptors with ICI182780 (fulvestrant) had no effect on daidzein-induced mitochondrial biogenesis. The isoflavone derivatives showed differential effects on the activation and expression of sirtuin (SIRT)1, a deacetylase and activator of PGC-1alpha. Daidzein and formononetin induced the expression of SIRT1 in RPTC and the activation of recombinant SIRT1, whereas DCHC and 7-C only induced the activation of recombinant SIRT1. In contrast, genistein, biochanin A, 4',7-D, and 5,7,4'-T only increased SIRT1 expression in RPTC. We have identified a series of substituted isoflavones that produce mitochondrial biogenesis through PGC1alpha and increased SIRT1 activity and/or expression, independently of the estrogen receptor. Furthermore, different structural components are responsible for the activities of isoflavones: the hydroxyl group at position 7 is required SIRT1 activation, a hydroxyl group at position 5 blocks SIRT1 activation, and the loss of the phenyl ring at position 3 or the 4'-hydroxy or -methoxy substituent blocks increased SIRT1 expression.

194 citations

Journal ArticleDOI
TL;DR: It is suggested that mitochondrial biogenesis following oxidant injury is mediated by p38 and EGFR activation of PGC-1α and regulated by the sequential activation of Src, p38 MAPK, EGFR, and p38MAPK.

154 citations


Cited by
More filters
Journal ArticleDOI
26 Jan 2012-Nature
TL;DR: This article showed that PGC1α expression in muscle stimulates an increase in expression of FNDC5, a membrane protein that is cleaved and secreted as a newly identified hormone, irisin.
Abstract: Exercise benefits a variety of organ systems in mammals, and some of the best-recognized effects of exercise on muscle are mediated by the transcriptional co-activator PPAR-γ co-activator-1 α (PGC1-α). Here we show in mouse that PGC1-α expression in muscle stimulates an increase in expression of FNDC5, a membrane protein that is cleaved and secreted as a newly identified hormone, irisin. Irisin acts on white adipose cells in culture and in vivo to stimulate UCP1 expression and a broad program of brown-fat-like development. Irisin is induced with exercise in mice and humans, and mildly increased irisin levels in the blood cause an increase in energy expenditure in mice with no changes in movement or food intake. This results in improvements in obesity and glucose homeostasis. Irisin could be therapeutic for human metabolic disease and other disorders that are improved with exercise.

3,338 citations

Journal ArticleDOI
06 Sep 2013-Science
TL;DR: The results reveal that transmissible and modifiable interactions between diet and microbiota influence host biology and that adiposity is transmissible from human to mouse and that it was associated with changes in serum levels of branched-chain amino acids.
Abstract: How much does the microbiota influence the host's phenotype? Ridaura et al. ([1241214][1] ; see the Perspective by [ Walker and Parkhill ][2]) obtained uncultured fecal microbiota from twin pairs discordant for body mass and transplanted them into adult germ-free mice. It was discovered that adiposity is transmissible from human to mouse and that it was associated with changes in serum levels of branched-chain amino acids. Moreover, obese-phenotype mice were invaded by members of the Bacteroidales from the lean mice, but, happily, the lean animals resisted invasion by the obese microbiota. [1]: http://www.sciencemag.org/content/341/6150/1241214.full [2]: /lookup/doi/10.1126/science.1243787

2,929 citations

Journal ArticleDOI
20 Jul 2012-Cell
TL;DR: Beige cells have a gene expression pattern distinct from either white or brown fat and are preferentially sensitive to the polypeptide hormone irisin, providing evidence that previously identified brown fat deposits in adult humans are composed of beige adipocytes.

2,767 citations

Journal ArticleDOI
16 Mar 2012-Cell
TL;DR: This work provides a current view of how mitochondrial functions impinge on health and disease and identifies mitochondrial dysfunction as a key factor in a myriad of diseases, including neurodegenerative and metabolic disorders.

2,266 citations

Journal ArticleDOI
TL;DR: The finding that the muscle secretome consists of several hundred secreted peptides provides a conceptual basis and a whole new paradigm for understanding how muscles communicate with other organs, such as adipose tissue, liver, pancreas, bones and brain.
Abstract: During the past decade, skeletal muscle has been identified as a secretory organ. Accordingly, we have suggested that cytokines and other peptides that are produced, expressed and released by muscle fibres and exert either autocrine, paracrine or endocrine effects should be classified as myokines. The finding that the muscle secretome consists of several hundred secreted peptides provides a conceptual basis and a whole new paradigm for understanding how muscles communicate with other organs, such as adipose tissue, liver, pancreas, bones and brain. However, some myokines exert their effects within the muscle itself. Thus, myostatin, LIF, IL-6 and IL-7 are involved in muscle hypertrophy and myogenesis, whereas BDNF and IL-6 are involved in AMPK-mediated fat oxidation. IL-6 also appears to have systemic effects on the liver, adipose tissue and the immune system, and mediates crosstalk between intestinal L cells and pancreatic islets. Other myokines include the osteogenic factors IGF-1 and FGF-2; FSTL-1, which improves the endothelial function of the vascular system; and the PGC-1α-dependent myokine irisin, which drives brown-fat-like development. Studies in the past few years suggest the existence of yet unidentified factors, secreted from muscle cells, which may influence cancer cell growth and pancreas function. Many proteins produced by skeletal muscle are dependent upon contraction; therefore, physical inactivity probably leads to an altered myokine response, which could provide a potential mechanism for the association between sedentary behaviour and many chronic diseases.

2,002 citations