scispace - formally typeset
Search or ask a question
Author

Kyle J. Myers

Bio: Kyle J. Myers is an academic researcher from Food and Drug Administration. The author has contributed to research in topics: Imaging phantom & Image quality. The author has an hindex of 31, co-authored 190 publications receiving 5132 citations. Previous affiliations of Kyle J. Myers include University of Arizona & Center for Devices and Radiological Health.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper considers the task of detection of a weak signal in a noisy image and suggests the Hotelling model with channels as a useful model observer for the purpose of assessing and optimizing image quality with respect to simple detection tasks.
Abstract: Image quality can be defined objectively in terms of the performance of some "observer" (either a human or a mathematical model) for some task of practical interest. If the end user of the image will be a human, model observers are used to predict the task performance of the human, as measured by psychophysical studies, and hence to serve as the basis for optimization of image quality. In this paper, we consider the task of detection of a weak signal in a noisy image. The mathematical observers considered include the ideal Bayesian, the nonprewhitening matched filter, a model based on linear-discriminant analysis and referred to as the Hotelling observer, and the Hotelling and Bayesian observers modified to account for the spatial-frequency-selective channels in the human visual system. The theory behind these observer models is briefly reviewed, and several psychophysical studies relating to the choice among them are summarized. Only the Hotelling model with channels is mathematically tractable in all cases considered here and capable of accounting for all of these data. This model requires no adjustment of parameters to fit the data and is relatively insensitive to the details of the channel mechanism. We therefore suggest it as a useful model observer for the purpose of assessing and optimizing image quality with respect to simple detection tasks.

465 citations

Journal ArticleDOI
TL;DR: A frequency-selective mechanism is added to the ideal-observer model, similar to the channel mechanism that has been demonstrated through experiments that measure a subject's ability to detect grating stimuli.
Abstract: Several authors have measured the detection ability of human observers for objects in correlated (nonwhite) noise. These studies have shown that the human observer has approximately constant efficiency when compared with a nonprewhitening ideal observer. In this paper we add a frequency-selective mechanism to the ideal-observer model, similar to the channel mechanism that has been demonstrated through experiments that measure a subject's ability to detect grating stimuli. For a number of detection and discrimination tasks, the nonprewhitening ideal-observer model and the channelized ideal-observer model yield similar performance predictions. Thus both models seem equally capable of explaining a considerable body of psychophysical data, and it would be difficult to devise an experiment to determine which model is more nearly correct.

431 citations

Journal ArticleDOI
TL;DR: In this paper, the authors derived figures of merit for image quality on the basis of the performance of mathematical observers on specific detection and estimation tasks, which were based on the Fisher information matrix relevant to estimation of the Fourier coefficients and closely related Fourier crosstalk matrix introduced earlier by Barrett and Gifford.
Abstract: Figures of merit for image quality are derived on the basis of the performance of mathematical observers on specific detection and estimation tasks. The tasks include detection of a known signal superimposed on a known background, detection of a known signal on a random background, estimation of Fourier coefficients of the object, and estimation of the integral of the object over a specified region of interest. The chosen observer for the detection tasks is the ideal linear discriminant, which we call the Hotelling observer. The figures of merit are based on the Fisher information matrix relevant to estimation of the Fourier coefficients and the closely related Fourier crosstalk matrix introduced earlier by Barrett and Gifford [Phys. Med. Biol. 39, 451 (1994)]. A finite submatrix of the infinite Fisher information matrix is used to set Cramer-Rao lower bounds on the variances of the estimates of the first N Fourier coefficients. The figures of merit for detection tasks are shown to be closely related to the concepts of noise-equivalent quanta (NEQ) and generalized NEQ, originally derived for linear, shift-invariant imaging systems and stationary noise. Application of these results to the design of imaging systems is discussed.

244 citations

Journal ArticleDOI
TL;DR: In this article, the authors found that images with equal pixel signal-to-noise ratio (SNRp) but different correlation properties give quite different observer-performance measures for a simple detection experiment.
Abstract: Pixel signal-to-noise ratio is one accepted measure of image quality for predicting observer performance in medical imaging. We have found, however, that images with equal pixel signal-to-noise ratio (SNRp) but different correlation properties give quite different observer-performance measures for a simple detection experiment. The SNR at the output of an ideal detector with the ability to prewhiten the noise is also a poor predictor of human performance for disk signals in high-pass noise. We have found constant observer efficiencies for humans relative to the performance of a nonprewhitening detector for this task.

231 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A look at progress in the field over the last 20 years is looked at and some of the challenges that remain for the years to come are suggested.
Abstract: The analysis of medical images has been woven into the fabric of the pattern analysis and machine intelligence (PAMI) community since the earliest days of these Transactions. Initially, the efforts in this area were seen as applying pattern analysis and computer vision techniques to another interesting dataset. However, over the last two to three decades, the unique nature of the problems presented within this area of study have led to the development of a new discipline in its own right. Examples of these include: the types of image information that are acquired, the fully three-dimensional image data, the nonrigid nature of object motion and deformation, and the statistical variation of both the underlying normal and abnormal ground truth. In this paper, we look at progress in the field over the last 20 years and suggest some of the challenges that remain for the years to come.

4,249 citations

Journal ArticleDOI
TL;DR: The Update Committee recommends that HER2 status (HER2 negative or positive) be determined in all patients with invasive breast cancer on the basis of one or more HER2 test results (negative, equivocal, or positive).
Abstract: Purpose To update the American Society of Clinical Oncology (ASCO)/College of American Pathologists (CAP) guideline recommendations for human epidermal growth factor receptor 2 (HER2) testing in breast cancer to improve the accuracy of HER2 testing and its utility as a predictive marker in invasive breast cancer.

2,934 citations

Journal ArticleDOI
TL;DR: The Update Committee recommends that HER2 status (HER2 negative or positive) be determined in all patients with invasive breast cancer on the basis of one or more HER2 test results (negative, equivocal, or positive).
Abstract: Purpose.—To update the American Society of Clinical Oncology (ASCO)/College of American Pathologists (CAP) guideline recommendations for human epidermal growth factor receptor 2 (HER2) testing in b...

2,817 citations

Journal ArticleDOI
12 Dec 2017-JAMA
TL;DR: In the setting of a challenge competition, some deep learning algorithms achieved better diagnostic performance than a panel of 11 pathologists participating in a simulation exercise designed to mimic routine pathology workflow; algorithm performance was comparable with an expert pathologist interpreting whole-slide images without time constraints.
Abstract: Importance Application of deep learning algorithms to whole-slide pathology images can potentially improve diagnostic accuracy and efficiency. Objective Assess the performance of automated deep learning algorithms at detecting metastases in hematoxylin and eosin–stained tissue sections of lymph nodes of women with breast cancer and compare it with pathologists’ diagnoses in a diagnostic setting. Design, Setting, and Participants Researcher challenge competition (CAMELYON16) to develop automated solutions for detecting lymph node metastases (November 2015-November 2016). A training data set of whole-slide images from 2 centers in the Netherlands with (n = 110) and without (n = 160) nodal metastases verified by immunohistochemical staining were provided to challenge participants to build algorithms. Algorithm performance was evaluated in an independent test set of 129 whole-slide images (49 with and 80 without metastases). The same test set of corresponding glass slides was also evaluated by a panel of 11 pathologists with time constraint (WTC) from the Netherlands to ascertain likelihood of nodal metastases for each slide in a flexible 2-hour session, simulating routine pathology workflow, and by 1 pathologist without time constraint (WOTC). Exposures Deep learning algorithms submitted as part of a challenge competition or pathologist interpretation. Main Outcomes and Measures The presence of specific metastatic foci and the absence vs presence of lymph node metastasis in a slide or image using receiver operating characteristic curve analysis. The 11 pathologists participating in the simulation exercise rated their diagnostic confidence as definitely normal, probably normal, equivocal, probably tumor, or definitely tumor. Results The area under the receiver operating characteristic curve (AUC) for the algorithms ranged from 0.556 to 0.994. The top-performing algorithm achieved a lesion-level, true-positive fraction comparable with that of the pathologist WOTC (72.4% [95% CI, 64.3%-80.4%]) at a mean of 0.0125 false-positives per normal whole-slide image. For the whole-slide image classification task, the best algorithm (AUC, 0.994 [95% CI, 0.983-0.999]) performed significantly better than the pathologists WTC in a diagnostic simulation (mean AUC, 0.810 [range, 0.738-0.884];P Conclusions and Relevance In the setting of a challenge competition, some deep learning algorithms achieved better diagnostic performance than a panel of 11 pathologists participating in a simulation exercise designed to mimic routine pathology workflow; algorithm performance was comparable with an expert pathologist interpreting whole-slide images without time constraints. Whether this approach has clinical utility will require evaluation in a clinical setting.

2,116 citations

Journal ArticleDOI
TL;DR: Three new algorithms for 2D translation image registration to within a small fraction of a pixel that use nonlinear optimization and matrix-multiply discrete Fourier transforms are compared to evaluate a translation-invariant error metric.
Abstract: Three new algorithms for 2D translation image registration to within a small fraction of a pixel that use nonlinear optimization and matrix-multiply discrete Fourier transforms are compared. These algorithms can achieve registration with an accuracy equivalent to that of the conventional fast Fourier transform upsampling approach in a small fraction of the computation time and with greatly reduced memory requirements. Their accuracy and computation time are compared for the purpose of evaluating a translation-invariant error metric.

1,715 citations