scispace - formally typeset
Search or ask a question
Author

Kyle Luther

Bio: Kyle Luther is an academic researcher from University of California, Berkeley. The author has contributed to research in topics: Supernova & Galaxy cluster. The author has an hindex of 5, co-authored 6 publications receiving 788 citations. Previous affiliations of Kyle Luther include Lawrence Berkeley National Laboratory.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors explore how well spectra from the James Webb Space Telescope (JWST) will likely constrain bulk atmospheric properties of transiting exoplanets.
Abstract: We explore how well spectra from the James Webb Space Telescope (JWST) will likely constrain bulk atmospheric properties of transiting exoplanets. We start by modeling the atmospheres of archetypal hot Jupiter, warm Neptune, warm sub-Neptune, and cool super-Earth planets with atmospheres that are clear, cloudy, or of high mean molecular weight (HMMW). Next we simulate the λ = 1–11 μm transmission and emission spectra of these systems for several JWST instrument modes for single-transit or single-eclipse events. We then perform retrievals to determine how well temperatures and molecular mixing ratios (CH4, CO, CO2, H2O, NH3) can be constrained. We find that λ = 1–2.5 μm transmission spectra will often constrain the major molecular constituents of clear solar-composition atmospheres well. Cloudy or HMMW atmospheres will often require full 1–11 μm spectra for good constraints, and emission data may be more useful in cases of sufficiently high Fp and high Fp/F*. Strong temperature inversions in the solar-composition hot-Jupiter atmosphere should be detectable with 1–2.5+ μm emission spectra, and 1–5+ μm emission spectra will constrain the temperature–pressure profiles of warm planets. Transmission spectra over 1–5+ μm will constrain [Fe/H] values to better than 0.5 dex for the clear atmospheres of the hot and warm planets studied. Carbon-to-oxygen ratios can be constrained to better than a factor of 2 in some systems. We expect that these results will provide useful predictions of the scientific value of single-event JWST spectra until its on-orbit performance is known.

473 citations

Journal ArticleDOI
TL;DR: In this article, the authors explore how well James Webb Space Telescope (JWST) spectra will likely constrain bulk atmospheric properties of transiting exoplanets, and they find that the JWST spectra can often constrain the major molecular constituents of clear solar composition atmospheres well.
Abstract: We explore how well James Webb Space Telescope (JWST) spectra will likely constrain bulk atmospheric properties of transiting exoplanets. We start by modeling the atmospheres of archetypal hot Jupiter, warm Neptune, warm sub-Neptune, and cool super-Earth planets with clear, cloudy, or high mean molecular weight atmospheres. Next we simulate the $\lambda = 1 - 11$ $\mu$m transmission and emission spectra of these systems for several JWST instrument modes for single transit and eclipse events. We then perform retrievals to determine how well temperatures and molecular mixing ratios (CH$_4$, CO, CO$_2$, H$_2$O, NH$_3$) can be constrained. We find that $\lambda = 1 - 2.5$ $\mu$m transmission spectra will often constrain the major molecular constituents of clear solar composition atmospheres well. Cloudy or high mean molecular weight atmospheres will often require full $1 - 11$ $\mu$m spectra for good constraints, and emission data may be more useful in cases of sufficiently high $F_p$ and high $F_p/F_*$. Strong temperature inversions in the solar composition hot Jupiter atmosphere should be detectable with $1 - 2.5+$ $\mu$m emission spectra, and $1 - 5+$ $\mu$m emission spectra will constrain the temperature-pressure profiles of warm planets. Transmission spectra over $1 - 5+$ $\mu$m will constrain [Fe/H] values to better than 0.5 dex for the clear atmospheres of the hot and warm planets studied. Carbon-to-oxygen ratios can be constrained to better than a factor of 2 in some systems. We expect that these results will provide useful predictions of the scientific value of single event JWST spectra until its on-orbit performance is known.

351 citations

Journal ArticleDOI
TL;DR: In this paper, a gravitationally lensed supernova (SN) was discovered behind the galaxy cluster MOO J1014+0038 with a redshift of 2.22.
Abstract: We present the discovery and measurements of a gravitationally lensed supernova (SN) behind the galaxy cluster MOO J1014+0038. Based on multi-band Hubble Space Telescope and Very Large Telescope (VLT) photometry of the supernova, and VLT spectroscopy of the host galaxy, we find a 97.5% probability that this SN is a SN Ia, and a 2.5% chance of a CC SN. Our typing algorithm combines the shape and color of the light curve with the expected rates of each SN type in the host galaxy. With a redshift of 2.2216, this is the highest redshift SN Ia discovered with a spectroscopic host-galaxy redshift. A further distinguishing feature is that the lensing cluster, at redshift 1.23, is the most distant to date to have an amplified SN. The SN lies in the middle of the color and light-curve shape distributions found at lower redshift, disfavoring strong evolution to z = 2.22. We estimate an amplification due to gravitational lensing of 2.8+0.6-0.5 (1.10 +- 0.23 mag)---compatible with the value estimated from the weak-lensing-derived mass and the mass-concentration relation from LambdaCDM simulations---making it the most amplified SN Ia discovered behind a galaxy cluster.

27 citations

Journal ArticleDOI
TL;DR: In this article, a gravitationally lensed supernova (SN) was discovered behind the galaxy cluster MOO J1014+0038 with a redshift of 2.22.
Abstract: We present the discovery and measurements of a gravitationally lensed supernova (SN) behind the galaxy cluster MOO J1014+0038. Based on multi-band Hubble Space Telescope and Very Large Telescope (VLT) photometry of the supernova, and VLT spectroscopy of the host galaxy, we find a 97.5% probability that this SN is a SN Ia, and a 2.5% chance of a CC SN. Our typing algorithm combines the shape and color of the light curve with the expected rates of each SN type in the host galaxy. With a redshift of 2.2216, this is the highest redshift SN Ia discovered with a spectroscopic host-galaxy redshift. A further distinguishing feature is that the lensing cluster, at redshift 1.23, is the most distant to date to have an amplified SN. The SN lies in the middle of the color and light-curve shape distributions found at lower redshift, disfavoring strong evolution to z = 2.22. We estimate an amplification due to gravitational lensing of 2.8+0.6-0.5 (1.10 +- 0.23 mag)---compatible with the value estimated from the weak-lensing-derived mass and the mass-concentration relation from LambdaCDM simulations---making it the most amplified SN Ia discovered behind a galaxy cluster.

25 citations

Journal ArticleDOI
TL;DR: The See Change survey as mentioned in this paper was designed to make $z>1$ cosmological measurements by efficiently discovering high-redshift Type Ia supernovae (SNe Ia) and improving cluster mass measurements through weak lensing.
Abstract: The See Change survey was designed to make $z>1$ cosmological measurements by efficiently discovering high-redshift Type Ia supernovae (SNe Ia) and improving cluster mass measurements through weak lensing. This survey observed twelve galaxy clusters with the Hubble Space Telescope spanning the redshift range $z=1.13$ to $1.75$, discovering 57 likely transients and 27 likely SNe Ia at $z\sim 0.8-2.3$. As in similar previous surveys (Dawson et al. 2009), this proved to be a highly efficient use of HST for SN observations; the See Change survey additionally tested the feasibility of maintaining, or further increasing, the efficiency at yet higher redshifts, where we have less detailed information on the expected cluster masses and star-formation rates. We find that the resulting number of SNe Ia per orbit is a factor of $\sim 8$ higher than for a field search, and 45% of our orbits contained an active SN Ia within 22 rest-frame days of peak, with one of the clusters by itself yielding 6 of the SNe Ia. We present the survey design, pipeline, and SN discoveries. Novel features include fully blinded SN searches, the first random forest candidate classifier for undersampled IR data (with a 50% detection threshold within 0.05 magnitudes of human searchers), real-time forward-modeling photometry of candidates, and semi-automated photometric classifications and follow-up forecasts. We also describe the spectroscopic follow-up, instrumental in measuring host-galaxy redshifts. The cosmology analysis of our sample will be presented in a companion paper.

10 citations


Cited by
More filters
Journal ArticleDOI
Giovanna Tinetti1, Pierre Drossart, Paul Eccleston2, Paul Hartogh3  +240 moreInstitutions (45)
TL;DR: The ARIEL mission as mentioned in this paper was designed to observe a large number of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25-7.8 μm spectral range and multiple narrow-band photometry in the optical.
Abstract: Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.

298 citations

Journal ArticleDOI
TL;DR: In this article, the authors present estimates of how many exoplanets the Transiting Exoplanet Survey Satellite (TESS) will detect, the physical properties of the detected planets, and the properties of those planets that those planets orbit.
Abstract: The Transiting Exoplanet Survey Satellite (TESS) has a goal of detecting small planets orbiting stars bright enough for mass determination via ground-based radial velocity observations. Here, we present estimates of how many exoplanets the TESS mission will detect, the physical properties of the detected planets, and the properties of the stars that those planets orbit. This work uses stars drawn from the TESS Input Catalog Candidate Target List and revises yields from prior studies that were based on Galactic models. We modeled the TESS observing strategy to select approximately 200,000 stars at 2-minute cadence, while the remaining stars are observed at 30-minute cadence in full-frame image data. We placed zero or more planets in orbit around each star, with physical properties following measured exoplanet occurrence rates, and used the TESS noise model to predict the derived properties of the detected exoplanets. In the TESS 2-minute cadence mode we estimate that TESS will find 1250 ± 70 exoplanets (90% confidence), including 250 smaller than 2 R(sub ⊕). Furthermore, we predict that an additional 3100 planets will be found in full-frame image data orbiting bright dwarf stars and more than 10,000 around fainter stars. We predict that TESS will find 500 planets orbiting M dwarfs, but the majority of planets will orbit stars larger than the Sun. Our simulated sample of planets contains hundreds of small planets amenable to radial velocity follow-up, potentially more than tripling the number of planets smaller than 4 R(sub ⊕) with mass measurements. This sample of simulated planets is available for use in planning follow-up observations and analyses.

290 citations

Journal ArticleDOI
TL;DR: In this paper, thermal emission and transmission spectra for each planet, varying composition and surface pressure of the atmosphere, were modeled and the molecular compositions assuming chemical equilibrium, which can strongly depend on temperature.
Abstract: Nine transiting Earth-sized planets have recently been discovered around nearby late M dwarfs, including the TRAPPIST-1 planets and two planets discovered by the MEarth survey, GJ 1132b and LHS 1140b. These planets are the smallest known planets that may have atmospheres amenable to detection with JWST. We present model thermal emission and transmission spectra for each planet, varying composition and surface pressure of the atmosphere. We base elemental compositions on those of Earth, Titan, and Venus and calculate the molecular compositions assuming chemical equilibrium, which can strongly depend on temperature. Both thermal emission and transmission spectra are sensitive to the atmospheric composition; thermal emission spectra are sensitive to surface pressure and temperature. We predict the observability of each planet's atmosphere with JWST. GJ 1132b and TRAPPIST-1b are excellent targets for emission spectroscopy with JWST/MIRI, requiring fewer than 10 eclipse observations. Emission photometry for TRAPPIST-1c requires 5-15 eclipses; LHS 1140b and TRAPPIST-1d, TRAPPIST-1e, and TRAPPIST-1f, which could possibly have surface liquid water, may be accessible with photometry. Seven of the nine planets are strong candidates for transmission spectroscopy measurements with JWST, though the number of transits required depends strongly on the planets' actual masses. Using the measured masses, fewer than 20 transits are required for a 5 sigma detection of spectral features for GJ 1132b and six of the TRAPPIST-1 planets. Dedicated campaigns to measure the atmospheres of these nine planets will allow us, for the first time, to probe formation and evolution processes of terrestrial planetary atmospheres beyond our solar system.

282 citations

Journal ArticleDOI
TL;DR: In this article, a chain of models, linking the formation of a planet to its observable present-day spectrum, is presented, including the planet's formation and migration, its long-term thermodynamic evolution, a variety of disk chemistry models, a non-gray atmospheric model, and a radiometric model to obtain simulated spectroscopic observations with James Webb Space Telescope and ARIEL.
Abstract: The composition of a planet's atmosphere is determined by its formation, evolution, and present-day insolation. A planet's spectrum therefore may hold clues on its origins. We present a "chain" of models, linking the formation of a planet to its observable present-day spectrum. The chain links include (1) the planet's formation and migration, (2) its long-term thermodynamic evolution, (3) a variety of disk chemistry models, (4) a non-gray atmospheric model, and (5) a radiometric model to obtain simulated spectroscopic observations with James Webb Space Telescope and ARIEL. In our standard chemistry model the inner disk is depleted in refractory carbon as in the Solar System and in white dwarfs polluted by extrasolar planetesimals. Our main findings are: (1) envelope enrichment by planetesimal impacts during formation dominates the final planetary atmospheric composition of hot Jupiters. We investigate two, under this finding, prototypical formation pathways: a formation inside or outside the water iceline, called "dry" and "wet" planets, respectively. (2) Both the "dry" and "wet" planets are oxygen-rich (C/O 1 for the "dry" planet. (3) While we consistently find C/O ratios <1, they still vary significantly. To link a formation history to a specific C/O, a better understanding of the disk chemistry is thus needed.

281 citations

Journal ArticleDOI
TL;DR: In this paper, the Max Planck Institute for Astronomy, Heidelberg, Germany and NASA's Science Mission Directorate provided a grant for a study of the effect of solar radiation on the Earth's magnetic field.
Abstract: National Science Foundation Graduate Research Fellowship Program [DGE-1143953]; Max Planck Institute for Astronomy, Heidelberg; NASA's Science Mission Directorate

269 citations