scispace - formally typeset
Search or ask a question
Author

Kyle N. Crabtree

Bio: Kyle N. Crabtree is an academic researcher from University of California, Davis. The author has contributed to research in topics: Rotational spectroscopy & Dissociative recombination. The author has an hindex of 21, co-authored 49 publications receiving 1160 citations. Previous affiliations of Kyle N. Crabtree include Harvard University & Ball State University.


Papers
More filters
Journal ArticleDOI
TL;DR: The detection of E-cyanomethanimine (E-HNCHCN) towards Sagittarius B2(N) was made by comparing the publicly available Green Bank Telescope (GBT) PRIMOS survey spectra (Hollis et al. as discussed by the authors ) to laboratory rotational spectra from a reaction product screening experiment.
Abstract: The detection E-cyanomethanimine (E-HNCHCN) towards Sagittarius B2(N) is made by comparing the publicly available Green Bank Telescope (GBT) PRIMOS survey spectra (Hollis et al.) to laboratory rotational spectra from a reaction product screening experiment. The experiment uses broadband molecular rotational spectroscopy to monitor the reaction products produced in an electric discharge source using a gas mixture of NH3 and CH3CN. Several transition frequency coincidences between the reaction product screening spectra and previously unassigned interstellar rotational transitions in the PRIMOS survey have been assigned to E cyanomethanimine. A total of 8 molecular rotational transitions of this molecule between 9 and 50 GHz are observed with the GBT. E-cyanomethanimine, often called the HCN dimer, is an important molecule in prebiotic chemistry because it is a chemical intermediate in proposed synthetic routes of adenine, one of the two purine nucleobases found in DNA and RNA. New analyses of the rotational spectra of both E-cyanomethanimine and Z-cyanomethanimine that incorporate previous mm-wave measurements are also reported.

104 citations

Journal ArticleDOI
TL;DR: The detection of E-cyanomethanimine (E-HNCHCN) toward Sagittarius B2(N) was made by comparing the publicly available Green Bank Telescope (GBT) PRIMOS survey spectra to laboratory rotational spectra from a reaction product screening experiment.
Abstract: The detection of E-cyanomethanimine (E-HNCHCN) toward Sagittarius B2(N) is made by comparing the publicly available Green Bank Telescope (GBT) PRIMOS survey spectra to laboratory rotational spectra from a reaction product screening experiment. The experiment uses broadband molecular rotational spectroscopy to monitor the reaction products produced in an electric discharge source using a gas mixture of NH3 and CH3CN. Several transition frequency coincidences between the reaction product screening spectra and previously unassigned interstellar rotational transitions in the PRIMOS survey have been assigned to E-cyanomethanimine. A total of eight molecular rotational transitions of this molecule between 9 and 50?GHz are observed with the GBT. E-cyanomethanimine, often called the HCN dimer, is an important molecule in prebiotic chemistry because it is a chemical intermediate in proposed synthetic routes of adenine, one of the two purine nucleobases found in DNA and RNA. New analyses of the rotational spectra of both E-cyanomethanimine and Z-cyanomethanimine that incorporate previous millimeter-wave measurements are also reported.

103 citations

Journal ArticleDOI
TL;DR: In this paper, Fourier transform microwave and double-resonance spectroscopy are combined with theory to study five isotopic species of H2C═O−O, and a precise equilibrium structure is reported for this ephemeral yet crucial reactive intermediate.
Abstract: A number of research groups have recently succeeded in producing the simple carbonyl oxides H2COO and CH3CHOO in sufficient quantity to observe them spectroscopically and to probe the kinetics of their reactions with NO2 and SO2. These latter studies provide evidence that the carbonyl oxides play an important role in the atmosphere, likely contributing to pollutant removal, aerosol formation, and planetary cooling. In this work, Fourier transform microwave and double-resonance spectroscopy are combined with theory to study five isotopic species of H2C═O–O, and a precise equilibrium structure is reported for this ephemeral yet crucial reactive intermediate. In contrast to the other investigations, which have exclusively produced H2C═O–O by halogen chemistry, passing a mixture of methane and excess molecular oxygen through an electrical discharge generates this isomer of H2CO2 with high selectivity, thereby suggesting that the molecule is produced in the direct vicinity of atmospheric lightning.

85 citations

Journal ArticleDOI
TL;DR: In this paper, a steady-state chemical model was proposed to analyze the nuclear-spindependence of reactions involving H3+ in diffuse molecular clouds, and it was shown that the ortho:para ratio of H 3+ is likely governed by a competition between dissociative recombination with electrons and thermalization via reactive collisions with H2.
Abstract: The excitation temperature T_01 derived from the relative intensities of the J = 0 (para) and J = 1 (ortho) rotational levels of H2 has been assumed to be an accurate measure of the kinetic temperature in interstellar environments. In diffuse molecular clouds, the average value of T_01 is ~70 K. However, the excitation temperature T(H3+) derived from the (J,K) = (1,1) (para) and (1,0) (ortho) rotational levels of H3+ has been observed to be ~30 K in the same types of environments. In this work, we present observations of H3+ in three additional diffuse cloud sight lines for which H2 measurements are available, showing that in 4 of 5 cases T_01 and T(H3+) are discrepant. We then examine the thermalization mechanisms for the ortho:para ratios of H3+ and H2, concluding that indeed T_01 is an accurate measure of the cloud kinetic temperature, while the ortho:para ratio of H3+ need not be thermal. By constructing a steady-state chemical model taking into account the nuclear-spindependence of reactions involving H3+, we show that the ortho:para ratio of H3+ in diffuse molecular clouds is likely governed by a competition between dissociative recombination with electrons and thermalization via reactive collisions with H2.

74 citations

Journal ArticleDOI
TL;DR: In this article, a steady-state chemical model was constructed to study the nuclear spin dependence of reactions involving H+ 3 in diffuse molecular clouds, and it was shown that the ortho:para ratio of H+3 is likely governed by a competition between dissociative recombination with electrons and thermalization via reactive collisions with H2.
Abstract: The excitation temperature T 01 derived from the relative intensities of the J = 0 (para) and J = 1 (ortho) rotational levels of H2 has been assumed to be an accurate measure of the kinetic temperature in interstellar environments. In diffuse molecular clouds, the average value of T 01 is ~70 K. However, the excitation temperature T(H+ 3) derived from the (J, K) = (1, 1) (para) and (1, 0) (ortho) rotational levels of H+ 3 has been observed to be ~30 K in the same types of environments. In this work, we present observations of H+ 3 in three additional diffuse cloud sight lines for which H2 measurements are available, showing that in four of five cases T 01 and T(H+ 3) are discrepant. We then examine the thermalization mechanisms for the ortho:para ratios of H+ 3 and H2, concluding that indeed T 01 is an accurate measure of the cloud kinetic temperature, while the ortho:para ratio of H+ 3 need not be thermal. By constructing a steady-state chemical model taking into account the nuclear spin dependence of reactions involving H+ 3, we show that the ortho:para ratio of H+ 3 in diffuse molecular clouds is likely governed by a competition between dissociative recombination with electrons and thermalization via reactive collisions with H2.

74 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a review examines current understanding of the processes regulating tropospheric ozone at global to local scales from both measurements and models and takes the view that knowledge across the scales is important for dealing with air quality and climate change in a synergistic manner.
Abstract: Ozone holds a certain fascination in atmospheric science. It is ubiquitous in the atmosphere, central to tropospheric oxidation chemistry, yet harmful to human and ecosystem health as well as being an important greenhouse gas. It is not emitted into the atmosphere but is a by-product of the very oxidation chemistry it largely initiates. Much effort is focussed on the reduction of surface levels of ozone owing to its health impacts but recent efforts to achieve reductions in exposure at a country scale have proved difficult to achieve due to increases in background ozone at the zonal hemispheric scale. There is also a growing realisation that the role of ozone as a short-lived climate pollutant could be important in integrated air quality climate-change mitigation. This review examines current understanding of the processes regulating tropospheric ozone at global to local scales from both measurements and models. It takes the view that knowledge across the scales is important for dealing with air quality and climate change in a synergistic manner.

877 citations

01 Jan 2010
TL;DR: The authors studies the impact of ambiguity and ambiguity aversion on equilibrium asset prices and portfolio holdings in competitive financial markets, and finds that attitudes toward ambiguity are heterogeneous across the population, just as attitudes toward risk are heterogenous across the populations, but that heterogeneity of attitudes towards ambiguity has different implications than heterogeneity of attitude toward risk, and that investors who have cognitive biases do not affect prices because they are infra-marginal.
Abstract: This paper studies the impact of ambiguity and ambiguity aversion on equilibrium asset prices and portfolio holdings in competitive financial markets. It argues that attitudes toward ambiguity are heterogeneous across the population, just as attitudes toward risk are heterogeneous across the population, but that heterogeneity of attitudes toward ambiguity has different implications than heterogeneity of attitudes toward risk. In particular, when some state probabilities are not known, agents who are sufficiently ambiguity averse find open sets of prices for which they refuse to hold an ambiguous portfolio. This suggests a different cross-section of portfolio choices, a wider range of state price/probability ratios and different rankings of state price/probability ratios than would be predicted if state probabilities were known. Experiments confirm all of these suggestions. Our findings contradict the claim that investors who have cognitive biases do not affect prices because they are infra-marginal: ambiguity averse investors have an indirect effect on prices because they change the per-capita amount of risk that is to be shared among the marginal investors. Our experimental data also suggest a positive correlation between risk aversion and ambiguity aversion that might explain the “value effect” in historical data.

877 citations

Journal ArticleDOI
TL;DR: The UMIST Database for Astrochemistry (UDfaa) as discussed by the authors contains 6173 gas-phase reactions involving 467 species, 47 of which are new to this release.
Abstract: We present the fifth release of the UMIST Database for Astrochemistry (UDfA). The new reaction network contains 6173 gas-phase reactions, involving 467 species, 47 of which are new to this release. We have updated rate coefficients across all reaction types. We have included 1171 new anion reactions and updated and reviewed all photorates. In addition to the usual reaction network, we also now include, for download, state-specific deuterated rate coefficients, deuterium exchange reactions and a list of surface binding energies for many neutral species. Where possible, we have referenced the original source of all new and existing data. We have tested the main reaction network using a dark cloud model and a carbon-rich circumstellar envelope model. We present and briefly discuss the results of these models.

608 citations

Journal ArticleDOI
TL;DR: The biologically relevant chemistry of H2S and the enzymatic routes for its production and oxidation are discussed and the roles ascribed to protein persulfidation in cell signaling pathways are discussed.
Abstract: Signaling by H2S is proposed to occur via persulfidation, a posttranslational modification of cysteine residues (RSH) to persulfides (RSSH). Persulfidation provides a framework for understanding the physiological and pharmacological effects of H2S. Due to the inherent instability of persulfides, their chemistry is understudied. In this review, we discuss the biologically relevant chemistry of H2S and the enzymatic routes for its production and oxidation. We cover the chemical biology of persulfides and the chemical probes for detecting them. We conclude by discussing the roles ascribed to protein persulfidation in cell signaling pathways.

590 citations