scispace - formally typeset
Search or ask a question
Author

Kyle Rothenberger

Bio: Kyle Rothenberger is an academic researcher from University of Pennsylvania. The author has contributed to research in topics: Pemphigus vulgaris & Desmoglein 3. The author has an hindex of 4, co-authored 4 publications receiving 703 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: It is suggested that pemphigus autoantibodies inhibit the adhesive function of desmoglein proteins, and it is demonstrated that either Dsg1 or Dsg3 alone is sufficient to maintain keratinocyte adhesion.
Abstract: Patients with pemphigus foliaceus (PF) have blisters on skin, but not mucous membranes, whereas patients with pemphigus vulgaris (PV) develop blisters on mucous membranes and/or skin. PF and PV blisters are due to loss of keratinocyte cell–cell adhesion in the superficial and deep epidermis, respectively. PF autoantibodies are directed against desmoglein (Dsg) 1; PV autoantibodies bind Dsg3 or both Dsg3 and Dsg1. In this study, we test the hypothesis that coexpression of Dsg1 and Dsg3 in keratinocytes protects against pathology due to antibody-induced dysfunction of either one alone. Using passive transfer of pemphigus IgG to normal and DSG3null neonatal mice, we show that in the areas of epidermis and mucous membrane that coexpress Dsg1 and Dsg3, antibodies against either desmoglein alone do not cause spontaneous blisters, but antibodies against both do. In areas (such as superficial epidermis of normal mice) where Dsg1 without Dsg3 is expressed, anti-Dsg1 antibodies alone can cause blisters. Thus, the anti-desmoglein antibody profiles in pemphigus sera and the normal tissue distributions of Dsg1 and Dsg3 determine the sites of blister formation. These studies suggest that pemphigus autoantibodies inhibit the adhesive function of desmoglein proteins, and demonstrate that either Dsg1 or Dsg3 alone is sufficient to maintain keratinocyte adhesion.

416 citations

Journal ArticleDOI
TL;DR: The authors showed that desmoglein 3 is not only critical for cell adhesion in the deep stratified squamous epithelium, but also for anchoring the telogen hair to the outer root sheath of the follicle and underscore the importance of desmosomes in maintaining the normal structure and function of hair.

161 citations

Journal ArticleDOI
TL;DR: Data demonstrate that desmoglein 3 is not only critical for cell adhesion in the deep stratified squamous epithelium, but also for anchoring the telogen hair to the outer root sheath of the follicle and underscore the importance of desmosomes in maintaining the normal structure and function of hair.
Abstract: Little is known about the function of desmosomes in the normal structure and function of hair. Therefore, it was surprising that mice without desmoglein 3 (the autoantigen in pemphigus vulgaris) not only developed mucous membrane and skin lesions like pemphigus patients, but also developed hair loss. Analysis of this phenotype indicated that hair was normal through the first growth phase ('follicular neogenesis'). Around day 20, however, when the hair follicles entered the resting phase of the hair growth cycle (telogen), mice with a targeted disruption of the desmoglein 3 gene (DSG3-/-) lost hair in a wave-like pattern from the head to the tail. Hair then regrew and was lost again in the same pattern with the next synchronous hair cycle. In adults, hair was lost in patches. Gentle hair pulls with adhesive tape showed that anagen (growing) hairs were firmly anchored in DSG3-/- mice, but telogen hairs came out in clumps compared to that of DSG3+/- and +/+ littermates in which telogen hairs were firmly anchored. Histology of bald skin areas in DSG3-/- mice showed cystic telogen hair follicles without hair shafts. Histology of hair follicles in early telogen, just before clinical hair loss occurred, showed loss of cell adhesion (acantholysis) between the cells surrounding the telogen club and the basal layer of the outer root sheath epithelium. Electron microscopy revealed 'half-desmosomes' at the plasma membranes of acantholytic cells. Similar acantholytic histology and ultrastructural findings have been previously reported in skin and mucous membrane lesions of DSG3-/- mice and pemphigus vulgaris patients. Immunoperoxidase staining with an antibody raised against mouse desmoglein 3 showed intense staining on the cell surface of keratinocytes surrounding the telogen hair club in normal mice. Similar staining was seen in human telogen hair with an anti-human desmoglein 3 antibody. Finally, a scalp biopsy from a pemphigus vulgaris patient showed empty telogen hair follicles. These data demonstrate that desmoglein 3 is not only critical for cell adhesion in the deep stratified squamous epithelium, but also for anchoring the telogen hair to the outer root sheath of the follicle and underscore the importance of desmosomes in maintaining the normal structure and function of hair.

146 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review has used Chase as the model and tried to put the adult hair follicle growth cycle in perspective, and hopes that this work will serve as an introduction to basic biologists who are looking for a defined biological system that illustrates many of the challenges of modern biology.
Abstract: Nearly 50 years ago, Chase published a review of hair cycling in which he detailed hair growth in the mouse and integrated hair biology with the biology of his day. In this review we have used Chas...

1,311 citations

Journal ArticleDOI
TL;DR: The finding of a deletion in plakoglobin in ARVC suggests that the proteins involved in cell-cell adhesion play an important part in maintaining myocyte integrity, and when junctions are disrupted, cell death, and fibrofatty replacement occur.

996 citations

Journal ArticleDOI
TL;DR: The following contributions are designed to stimulate the discussion of the chronobiological control system that cyclically drives the hair follicle through dramatic remodelling processes between phases of growth, regression, and relative resting.
Abstract: Despite more than a hundred years of professional hair research, and substantial recent progress in unravelling the molecular controls of hair follicle morphogenesis, the chronobiological control system that cyclically drives the hair follicle through dramatic remodelling processes between phases of growth (anagen), regression (catagen), and relative resting (telogen) have remained disappointingly obscure. In view of the vast literature that has become available over the past decades on numerous genetic, biochemical, cellular and pharmacological aspects of hair growth follicle control under physiological and pathological conditions, it is astounding how comparatively few researchers in the field have published theoretical concepts that explore how hair follicle cycling might be controlled. Since this question is at the very heart of basic and clinically applied hair biology, it deserves a much more systematic and serious public exploration, which the following contributions are designed to stimulate.

455 citations

Journal ArticleDOI
TL;DR: It is suggested that pemphigus autoantibodies inhibit the adhesive function of desmoglein proteins, and it is demonstrated that either Dsg1 or Dsg3 alone is sufficient to maintain keratinocyte adhesion.
Abstract: Patients with pemphigus foliaceus (PF) have blisters on skin, but not mucous membranes, whereas patients with pemphigus vulgaris (PV) develop blisters on mucous membranes and/or skin. PF and PV blisters are due to loss of keratinocyte cell–cell adhesion in the superficial and deep epidermis, respectively. PF autoantibodies are directed against desmoglein (Dsg) 1; PV autoantibodies bind Dsg3 or both Dsg3 and Dsg1. In this study, we test the hypothesis that coexpression of Dsg1 and Dsg3 in keratinocytes protects against pathology due to antibody-induced dysfunction of either one alone. Using passive transfer of pemphigus IgG to normal and DSG3null neonatal mice, we show that in the areas of epidermis and mucous membrane that coexpress Dsg1 and Dsg3, antibodies against either desmoglein alone do not cause spontaneous blisters, but antibodies against both do. In areas (such as superficial epidermis of normal mice) where Dsg1 without Dsg3 is expressed, anti-Dsg1 antibodies alone can cause blisters. Thus, the anti-desmoglein antibody profiles in pemphigus sera and the normal tissue distributions of Dsg1 and Dsg3 determine the sites of blister formation. These studies suggest that pemphigus autoantibodies inhibit the adhesive function of desmoglein proteins, and demonstrate that either Dsg1 or Dsg3 alone is sufficient to maintain keratinocyte adhesion.

416 citations

Journal ArticleDOI
TL;DR: It is shown here that exfoliative toxin A cleaved mouse and human Dsg1, but not closely related cadherins such as Dsg3.
Abstract: Exfoliative toxin A, produced by Staphylococcus aureus, causes blisters in bullous impetigo and its more generalized form, staphylococcal scalded-skin syndrome. The toxin shows exquisite specificity in causing loss of cell adhesion only in the superficial epidermis. Although exfoliative toxin A has the structure of a serine protease, a target protein has not been identified. Desmoglein (Dsg) 1, a desmosomal cadherin that mediates cell-cell adhesion, may be the target of exfoliative toxin A, because it is the target of autoantibodies in pemphigus foliaceus, in which blisters form with identical tissue specificity and histology. We show here that exfoliative toxin A cleaved mouse and human Dsg1, but not closely related cadherins such as Dsg3. We demonstrate this specific cleavage in cell culture, in neonatal mouse skin and with recombinant Dsg1, and conclude that Dsg1 is the specific receptor for exfoliative toxin A cleavage. This unique proteolytic attack on the desmosome causes a blister just below the stratum corneum, which forms the epidermal barrier, presumably allowing the bacteria in bullous impetigo to proliferate and spread beneath this barrier.

415 citations