scispace - formally typeset
Search or ask a question
Author

Kyle V. Butler

Bio: Kyle V. Butler is an academic researcher from University of Illinois at Chicago. The author has contributed to research in topics: HDAC6 & Histone deacetylase. The author has an hindex of 7, co-authored 8 publications receiving 1097 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Tubastatin A, a hydroxamate-containing HDAC6-selective compound, displayed no neuronal toxicity, thus, forecasting the potential application of this agent and its analogues to neurodegenerative conditions.
Abstract: Structure-based drug design combined with homology modeling techniques were used to develop potent inhibitors of HDAC6 that display superior selectivity for the HDAC6 isozyme compared to other inhibitors. These inhibitors can be assembled in a few synthetic steps, and thus are readily scaled up for in vivo studies. An optimized compound from this series, designated Tubastatin A, was tested in primary cortical neuron cultures in which it was found to induce elevated levels of acetylated α-tubulin, but not histone, consistent with its HDAC6 selectivity. Tubastatin A also conferred dose-dependent protection in primary cortical neuron cultures against glutathione depletion-induced oxidative stress. Importantly, when given alone at all concentrations tested, this hydroxamate-containing HDAC6-selective compound displayed no neuronal toxicity, thus, forecasting the potential application of this agent and its analogues to neurodegenerative conditions.

641 citations

Journal ArticleDOI
TL;DR: It is shown that HDAC6 inhibition promotes Treg suppressive activity in models of inflammation and autoimmunity, including multiple forms of experimental colitis and fully major histocompatibility complex (MHC)-incompatible cardiac allograft rejection.
Abstract: Foxp3(+) T-regulatory cells (Tregs) are key to immune homeostasis such that their diminished numbers or function can cause autoimmunity and allograft rejection. Foxp3(+) Tregs express multiple histone/protein deacetylases (HDACs) that regulate chromatin remodeling, gene expression, and protein function. Pan-HDAC inhibitors developed for oncologic applications enhance Treg production and Treg suppression function but have limited nononcologic utility given their broad actions and various side effects. We show, using HDAC6-deficient mice and wild-type (WT) mice treated with HDAC6-specific inhibitors, that HDAC6 inhibition promotes Treg suppressive activity in models of inflammation and autoimmunity, including multiple forms of experimental colitis and fully major histocompatibility complex (MHC)-incompatible cardiac allograft rejection. Many of the beneficial effects of HDAC6 targeting are also achieved by inhibition of the HDAC6-regulated protein heat shock protein 90 (HSP90). Hence, selective targeting of a single HDAC isoform, HDAC6, or its downstream target, HSP90, can promote Treg-dependent suppression of autoimmunity and transplant rejection.

238 citations

Journal ArticleDOI
TL;DR: This review will focus on the applications of selective HDAC inhibitors, inhibitors reported to show selectivity, and the relationship between inhibitor structure and selectivity.
Abstract: Histones undergo extensive posttranslational modifications that affect gene expression. Acetylation is a key histone modification that is primarily regulated by two enzymes, one of which is histone deacetylase (HDAC). The activity of HDAC causes transcriptional silencing of DNA. Eleven distinct zinc-dependent histone deacetylase isoforms have been identified in humans. Each isoform has a unique structure and function, and regulates a unique set of genes. HDAC is responsible for the regulation of many genes involved in cancer cell proliferation, and it has been implicated in the pathogenesis of many neurological conditions. HDAC inhibitors are known to be very effective anti-cancer agents, and research has shown them to be potential treatments for many other conditions. Histone deacetylase inhibitors modify the expression of many genes, and it is possible that inhibition of one isoform could cause epigenetic changes that are beneficial to treatment of a disease, while inhibition of another isoform could cause contradictory changes. Selective HDAC inhibitors will be better able to avoid these types of situations than non-specific inhibitors, and may also be less toxic than pan-HDAC inhibitors. Many potent pan-HDAC inhibitors have already been developed, leaving the development of selective inhibitors at the forefront of HDAC drug development. Certain structural moieties may be added to HDAC inhibitors to give isoform selectivity, and these will be discussed in this review. This review will focus on the applications of selective HDAC inhibitors, inhibitors reported to show selectivity, and the relationship between inhibitor structure and selectivity.

108 citations

Journal ArticleDOI
TL;DR: Second-generation Tubastatin A analogues synthesized and evaluated for their ability to inhibit selectively histone deacetylase 6 were well-tolerated and found to enhance the ability of regulatory T cells to inhibit the mitotic division of effector T cells both in vitro and in vivo.
Abstract: Second-generation Tubastatin A analogues were synthesized and evaluated for their ability to inhibit selectively histone deacetylase 6 (HDAC6). Substitutions to the carboline cap group were well-tolerated with substitution at the 2-position of both β- and γ-carbolines being optimal for HDAC6 activity and selectivity. Some compounds in this series were determined to have subnanomolar activity at HDAC6 with more than 7000 fold selectivity for HDAC6 versus HDAC1. Selected compounds were then evaluated for their ability to augment the immunosuppressive effect of Foxp3+ regulatory T cells. All compounds tested were found to enhance the ability of regulatory T cells to inhibit the mitotic division of effector T cells both in vitro and in vivo, suggesting that further investigation into the use of these compounds for the treatment of autoimmune disorders is warranted.

103 citations

Journal ArticleDOI
TL;DR: This study illustrates the power of the combined QSAR-VS method as a general approach for the effective identification of structurally novel bioactive compounds.
Abstract: Inhibitors of histone deacetylases (HDACIs) have emerged as a new class of drugs for the treatment of human cancers and other diseases because of their effects on cell growth, differentiation, and apoptosis. In this study we have developed several quantitative structure−activity relationship (QSAR) models for 59 chemically diverse histone deacetylase class 1 (HDAC1) inhibitors. The variable selection k nearest neighbor (kNN) and support vector machines (SVM) QSAR modeling approaches using both MolconnZ and MOE chemical descriptors generated from two-dimensional rendering of compounds as chemical graphs have been employed. We have relied on a rigorous model development workflow including the division of the data set into training, test, and external sets and extensive internal and external validation. Highly predictive QSAR models were generated with leave-one-out cross-validated (LOO-CV) q2 and external R2 values as high as 0.80 and 0.87, respectively, using the kNN/MolconnZ approach and 0.93 and 0.87, re...

98 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Most critical QSAR modeling routines that are regarded as best practices in the field are examined, including procedures used to validate models, both internally and externally, as well as the need to define model applicability domains that should be used when models are employed for the prediction of external compounds or compound libraries.
Abstract: After nearly five decades "in the making", QSAR modeling has established itself as one of the major computational molecular modeling methodologies. As any mature research discipline, QSAR modeling can be characterized by a collection of well defined protocols and procedures that enable the expert application of the method for exploring and exploiting ever growing collections of biologically active chemical compounds. This review examines most critical QSAR modeling routines that we regard as best practices in the field. We discuss these procedures in the context of integrative predictive QSAR modeling workflow that is focused on achieving models of the highest statistical rigor and external predictive power. Specific elements of the workflow consist of data preparation including chemical structure (and when possible, associated biological data) curation, outlier detection, dataset balancing, and model validation. We especially emphasize procedures used to validate models, both internally and externally, as well as the need to define model applicability domains that should be used when models are employed for the prediction of external compounds or compound libraries. Finally, we present several examples of successful applications of QSAR models for virtual screening to identify experimentally confirmed hits.

1,362 citations

Journal ArticleDOI
TL;DR: The development of small-molecule HDAC inhibitors and their use in the laboratory, in preclinical models and in the clinic are highlighted.
Abstract: Histone deacetylases (HDACs) are a class of epigenetic enzymes that remove acetyl groups from lysine residues on histones and other proteins. In this Review, the authors highlight the role of HDACs in cancer, neurological diseases and immune disorders, and discuss the development of small-molecule inhibitors. Epigenetic aberrations, which are recognized as key drivers of several human diseases, are often caused by genetic defects that result in functional deregulation of epigenetic proteins, their altered expression and/or their atypical recruitment to certain gene promoters. Importantly, epigenetic changes are reversible, and epigenetic enzymes and regulatory proteins can be targeted using small molecules. This Review discusses the role of altered expression and/or function of one class of epigenetic regulators — histone deacetylases (HDACs) — and their role in cancer, neurological diseases and immune disorders. We highlight the development of small-molecule HDAC inhibitors and their use in the laboratory, in preclinical models and in the clinic.

1,261 citations

Journal ArticleDOI
TL;DR: The key protein families that mediate epigenetic signalling through the acetylation and methylation of histones are reviewed, including histone deacetylases, protein methyltransferases, lysine demethylases, bromodomain-containing proteins and proteins that bind to methylated histones.
Abstract: Epigenetic regulation of gene expression is a dynamic and reversible process that establishes normal cellular phenotypes but also contributes to human diseases. At the molecular level, epigenetic regulation involves hierarchical covalent modification of DNA and the proteins that package DNA, such as histones. Here, we review the key protein families that mediate epigenetic signalling through the acetylation and methylation of histones, including histone deacetylases, protein methyltransferases, lysine demethylases, bromodomain-containing proteins and proteins that bind to methylated histones. These protein families are emerging as druggable classes of enzymes and druggable classes of protein-protein interaction domains. In this article, we discuss the known links with disease, basic molecular mechanisms of action and recent progress in the pharmacological modulation of each class of proteins.

1,184 citations

Journal ArticleDOI
TL;DR: The role of HDACs in cancer and the therapeutic potential ofHDAC inhibitors (HDACi) as emerging drugs in cancer treatment are discussed.
Abstract: Over the last several decades, it has become clear that epigenetic abnormalities may be one of the hallmarks of cancer. Posttranslational modifications of histones, for example, may play a crucial role in cancer development and progression by modulating gene transcription, chromatin remodeling, and nuclear architecture. Histone acetylation, a well-studied posttranslational histone modification, is controlled by the opposing activities of histone acetyltransferases (HATs) and histone deacetylases (HDACs). By removing acetyl groups, HDACs reverse chromatin acetylation and alter transcription of oncogenes and tumor suppressor genes. In addition, HDACs deacetylate numerous nonhistone cellular substrates that govern a wide array of biological processes including cancer initiation and progression. This review will discuss the role of HDACs in cancer and the therapeutic potential of HDAC inhibitors (HDACi) as emerging drugs in cancer treatment.

724 citations

Journal ArticleDOI
TL;DR: The role of histone deacetylases (HDAC) and the potential of these enzymes as therapeutic targets for cancer, neurodegenerative diseases and a number of other disorders is an area of rapidly expanding investigation.
Abstract: The role of histone deacetylases (HDAC) and the potential of these enzymes as therapeutic targets for cancer, neurodegenerative diseases and a number of other disorders is an area of rapidly expanding investigation. There are 18 HDACs in humans. These enzymes are not redundant in function. Eleven of the HDACs are zinc dependent, classified on the basis of homology to yeast HDACs: Class I includes HDACs 1, 2, 3, and 8; Class IIA includes HDACs 4, 5, 7, and 9; Class IIB, HDACs 6 and 10; and Class IV, HDAC11. Class III HDACs, sirtuins 1–7, have an absolute requirement for NAD+, are not zinc dependent and generally not inhibited by compounds that inhibit zinc dependent deacetylases. In addition to histones, HDACs have many nonhistone protein substrates which have a role in regulation of gene expression, cell proliferation, cell migration, cell death, and angiogenesis. HDAC inhibitors (HDACi) have been discovered of different chemical structure. HDACi cause accumulation of acetylated forms of proteins which can alter their structure and function. HDACi can induce different phenotypes in various transformed cells, including growth arrest, apoptosis, reactive oxygen species facilitated cell death and mitotic cell death. Normal cells are relatively resistant to HDACi induced cell death. Several HDACi are in various stages of development, including clinical trials as monotherapy and in combination with other anti-cancer drugs and radiation. The first HDACi approved by the FDA for cancer therapy is suberoylanilide hydroxamic acid (SAHA, vorinostat, Zolinza), approved for treatment of cutaneous T-cell lymphoma.

683 citations