scispace - formally typeset
Search or ask a question
Author

Kyoko Yamori

Other affiliations: Waseda University
Bio: Kyoko Yamori is an academic researcher from Asahi University. The author has contributed to research in topics: Quality of service & Cellular network. The author has an hindex of 9, co-authored 68 publications receiving 309 citations. Previous affiliations of Kyoko Yamori include Waseda University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a deep Q-network (DQN) based offloading algorithm was proposed to minimize the monetary cost and energy consumption of mobile users without a known mobility pattern.
Abstract: With the rapid increase in demand for mobile data, mobile network operators are trying to expand wireless network capacity by deploying wireless local area network (LAN) hotspots on to which they can offload their mobile traffic. However, these network-centric methods usually do not fulfill the interests of mobile users (MUs). Taking into consideration many issues such as different applications' deadlines, monetary cost and energy consumption, how the MU decides whether to offload their traffic to a complementary wireless LAN is an important issue. Previous studies assume the MU's mobility pattern is known in advance, which is not always true. In this paper, we study the MU's policy to minimize his monetary cost and energy consumption without known MU mobility pattern. We propose to use a kind of reinforcement learning technique called deep Q-network (DQN) for MU to learn the optimal offloading policy from past experiences. In the proposed DQN based offloading algorithm, MU's mobility pattern is no longer needed. Furthermore, MU's state of remaining data is directly fed into the convolution neural network in DQN without discretization. Therefore, not only does the discretization error present in previous work disappear, but also it makes the proposed algorithm has the ability to generalize the past experiences, which is especially effective when the number of states is large. Extensive simulations are conducted to validate our proposed offloading algorithms.

36 citations

Journal ArticleDOI
TL;DR: A study of the relationship between PSP and ESP in the simultaneous-play game (SPG) scenario, in which they compete to set prices of their cloud services simultaneously, shows that MUs prefer to select service from the edge cloud if the number of tasks they run is small.
Abstract: With offloading the tasks that mobile users (MUs) running in their mobile devices (MDs) to the data centers of remote public clouds, mobile cloud computing (MCC) can greatly improve the computing capacity and prolong the battery life of MDs. However, the data centers of remote public cloud are generally far from the MUs, thus long delay will be caused due to the transmission from the base station to the public clouds over the Internet. Mobile edge computing (MEC) is recognized as a promising technique to augment the computation capabilities of MDs and shorten the transmission delay. Nevertheless, compared with the traditional MCC and MEC generally has a limited number of cloud resources. Therefore, making a choice on offloading task to the MCC or MEC is a challenging issue for each MU. In this paper, we investigate service selection in a mobile cloud architecture, in which MUs select cloud services from two cloud service providers (CSPs), i.e., public cloud service provider (PSP) and an edge cloud service provider (ESP). We use M/M/$\infty $ queue and M/M/1 queue to model PSP and ESP, respectively. We analyze the interaction of the two CSPs and MUs by adopting Stackelberg game, in which PSP and ESP set the prices first, and then the MUs decide to select cloud services based on performances and prices. In particular, we study the relationship between PSP and ESP in the simultaneous-play game (SPG) scenario, in which they compete to set prices of their cloud services simultaneously. Our numerical results show that MUs prefer to select service from the edge cloud if the number of tasks they run is small. In another hand, more tasks will be offloaded to the remote public cloud if the number of tasks they run becomes large.

30 citations

Proceedings ArticleDOI
07 Nov 2016
TL;DR: This paper first formulate the WiFi offloading problem as a finite-horizon discrete-time Markov decision process (FDTMDP) with known MU's mobility pattern and proposes a dynamic programming based offloading algorithm, which can work well with unknown MU's Mobility pattern.
Abstract: With rapid increases in demand for mobile data, mobile network operators are trying to expand wireless network capacity by deploying WiFi hotspots to offload their mobile traffic. However, these network-centric methods usually do not fulfill interests of mobile users (MUs). MUs consider many problems to decide whether to offload their traffic to a complementary WiFi network. In this paper, we study the WiFi offloading problem from MU's perspective by considering delay-tolerance of traffic, monetary cost, energy consumption as well as the availability of MU's mobility pattern. We first formulate the WiFi offloading problem as a finite-horizon discrete-time Markov decision process (FDTMDP) with known MU's mobility pattern and propose a dynamic programming based offloading algorithm. Since MU's mobility pattern may not be known in advance, we then propose a reinforcement learning based offloading algorithm, which can work well with unknown MU's mobility pattern. Extensive simulations are conducted to validate our proposed offloading algorithms.

20 citations

Proceedings ArticleDOI
04 Jun 2012
TL;DR: A service quality coordination model combining QoS and QoE is proposed and is applied to a video-sharing service and its coordination model is derived based on subjective experiments.
Abstract: Both of Quality of Service (QoS) and Quality of Experience (QoE) are defined to specify the degree of service quality. Although they are dealt with in different layers in multi-layered models, collaboration of these is necessary to improve the user satisfaction for telecommunication services. In this paper, after sorting out the concepts and specification of QoS and QoE, a service quality coordination model combining these is proposed. The model is applied to a video-sharing service and its coordination model is derived based on subjective experiments. The structural equation modeling is used to compute the user satisfaction from QoS and QoE.

20 citations

Proceedings ArticleDOI
01 Dec 2004
TL;DR: In this paper, the quantitative relation between the guaranteed minimum bandwidth and the willingness to pay is shown by the subjective experiment of streaming contents and by the questionnaire survey of the waiting time for download.
Abstract: In recent years, the necessity of quality guaranteed services is increasing in the Internet The differentiated services, which have multiple classes using priority control, are being introduced Various issues need to be addressed when providing differentiated services, such as what sort of quality should be guaranteed, and what kind of pricing should be made for the service We address this problem by making it easier for test subjects to visualize the quality of service available with a minimum guaranteed bandwidth when evaluating the willingness to pay In this paper, the quantitative relation between the guaranteed minimum bandwidth and the willingness to pay is shown by the subjective experiment of streaming contents and by the questionnaire survey of the waiting time for download

19 citations


Cited by
More filters
Book
01 Jan 2001
TL;DR: This chapter discusses Decision-Theoretic Foundations, Game Theory, Rationality, and Intelligence, and the Decision-Analytic Approach to Games, which aims to clarify the role of rationality in decision-making.
Abstract: Preface 1. Decision-Theoretic Foundations 1.1 Game Theory, Rationality, and Intelligence 1.2 Basic Concepts of Decision Theory 1.3 Axioms 1.4 The Expected-Utility Maximization Theorem 1.5 Equivalent Representations 1.6 Bayesian Conditional-Probability Systems 1.7 Limitations of the Bayesian Model 1.8 Domination 1.9 Proofs of the Domination Theorems Exercises 2. Basic Models 2.1 Games in Extensive Form 2.2 Strategic Form and the Normal Representation 2.3 Equivalence of Strategic-Form Games 2.4 Reduced Normal Representations 2.5 Elimination of Dominated Strategies 2.6 Multiagent Representations 2.7 Common Knowledge 2.8 Bayesian Games 2.9 Modeling Games with Incomplete Information Exercises 3. Equilibria of Strategic-Form Games 3.1 Domination and Ratonalizability 3.2 Nash Equilibrium 3.3 Computing Nash Equilibria 3.4 Significance of Nash Equilibria 3.5 The Focal-Point Effect 3.6 The Decision-Analytic Approach to Games 3.7 Evolution. Resistance. and Risk Dominance 3.8 Two-Person Zero-Sum Games 3.9 Bayesian Equilibria 3.10 Purification of Randomized Strategies in Equilibria 3.11 Auctions 3.12 Proof of Existence of Equilibrium 3.13 Infinite Strategy Sets Exercises 4. Sequential Equilibria of Extensive-Form Games 4.1 Mixed Strategies and Behavioral Strategies 4.2 Equilibria in Behavioral Strategies 4.3 Sequential Rationality at Information States with Positive Probability 4.4 Consistent Beliefs and Sequential Rationality at All Information States 4.5 Computing Sequential Equilibria 4.6 Subgame-Perfect Equilibria 4.7 Games with Perfect Information 4.8 Adding Chance Events with Small Probability 4.9 Forward Induction 4.10 Voting and Binary Agendas 4.11 Technical Proofs Exercises 5. Refinements of Equilibrium in Strategic Form 5.1 Introduction 5.2 Perfect Equilibria 5.3 Existence of Perfect and Sequential Equilibria 5.4 Proper Equilibria 5.5 Persistent Equilibria 5.6 Stable Sets 01 Equilibria 5.7 Generic Properties 5.8 Conclusions Exercises 6. Games with Communication 6.1 Contracts and Correlated Strategies 6.2 Correlated Equilibria 6.3 Bayesian Games with Communication 6.4 Bayesian Collective-Choice Problems and Bayesian Bargaining Problems 6.5 Trading Problems with Linear Utility 6.6 General Participation Constraints for Bayesian Games with Contracts 6.7 Sender-Receiver Games 6.8 Acceptable and Predominant Correlated Equilibria 6.9 Communication in Extensive-Form and Multistage Games Exercises Bibliographic Note 7. Repeated Games 7.1 The Repeated Prisoners Dilemma 7.2 A General Model of Repeated Garnet 7.3 Stationary Equilibria of Repeated Games with Complete State Information and Discounting 7.4 Repeated Games with Standard Information: Examples 7.5 General Feasibility Theorems for Standard Repeated Games 7.6 Finitely Repeated Games and the Role of Initial Doubt 7.7 Imperfect Observability of Moves 7.8 Repeated Wines in Large Decentralized Groups 7.9 Repeated Games with Incomplete Information 7.10 Continuous Time 7.11 Evolutionary Simulation of Repeated Games Exercises 8. Bargaining and Cooperation in Two-Person Games 8.1 Noncooperative Foundations of Cooperative Game Theory 8.2 Two-Person Bargaining Problems and the Nash Bargaining Solution 8.3 Interpersonal Comparisons of Weighted Utility 8.4 Transferable Utility 8.5 Rational Threats 8.6 Other Bargaining Solutions 8.7 An Alternating-Offer Bargaining Game 8.8 An Alternating-Offer Game with Incomplete Information 8.9 A Discrete Alternating-Offer Game 8.10 Renegotiation Exercises 9. Coalitions in Cooperative Games 9.1 Introduction to Coalitional Analysis 9.2 Characteristic Functions with Transferable Utility 9.3 The Core 9.4 The Shapkey Value 9.5 Values with Cooperation Structures 9.6 Other Solution Concepts 9.7 Colational Games with Nontransferable Utility 9.8 Cores without Transferable Utility 9.9 Values without Transferable Utility Exercises Bibliographic Note 10. Cooperation under Uncertainty 10.1 Introduction 10.2 Concepts of Efficiency 10.3 An Example 10.4 Ex Post Inefficiency and Subsequent Oilers 10.5 Computing Incentive-Efficient Mechanisms 10.6 Inscrutability and Durability 10.7 Mechanism Selection by an Informed Principal 10.8 Neutral Bargaining Solutions 10.9 Dynamic Matching Processes with Incomplete Information Exercises Bibliography Index

3,569 citations

Journal ArticleDOI
TL;DR: This paper presents a comprehensive literature review on applications of deep reinforcement learning (DRL) in communications and networking, and presents applications of DRL for traffic routing, resource sharing, and data collection.
Abstract: This paper presents a comprehensive literature review on applications of deep reinforcement learning (DRL) in communications and networking. Modern networks, e.g., Internet of Things (IoT) and unmanned aerial vehicle (UAV) networks, become more decentralized and autonomous. In such networks, network entities need to make decisions locally to maximize the network performance under uncertainty of network environment. Reinforcement learning has been efficiently used to enable the network entities to obtain the optimal policy including, e.g., decisions or actions, given their states when the state and action spaces are small. However, in complex and large-scale networks, the state and action spaces are usually large, and the reinforcement learning may not be able to find the optimal policy in reasonable time. Therefore, DRL, a combination of reinforcement learning with deep learning, has been developed to overcome the shortcomings. In this survey, we first give a tutorial of DRL from fundamental concepts to advanced models. Then, we review DRL approaches proposed to address emerging issues in communications and networking. The issues include dynamic network access, data rate control, wireless caching, data offloading, network security, and connectivity preservation which are all important to next generation networks, such as 5G and beyond. Furthermore, we present applications of DRL for traffic routing, resource sharing, and data collection. Finally, we highlight important challenges, open issues, and future research directions of applying DRL.

1,153 citations

Posted Content
TL;DR: In this paper, a comprehensive literature review on applications of deep reinforcement learning in communications and networking is presented, which includes dynamic network access, data rate control, wireless caching, data offloading, network security, and connectivity preservation.
Abstract: This paper presents a comprehensive literature review on applications of deep reinforcement learning in communications and networking. Modern networks, e.g., Internet of Things (IoT) and Unmanned Aerial Vehicle (UAV) networks, become more decentralized and autonomous. In such networks, network entities need to make decisions locally to maximize the network performance under uncertainty of network environment. Reinforcement learning has been efficiently used to enable the network entities to obtain the optimal policy including, e.g., decisions or actions, given their states when the state and action spaces are small. However, in complex and large-scale networks, the state and action spaces are usually large, and the reinforcement learning may not be able to find the optimal policy in reasonable time. Therefore, deep reinforcement learning, a combination of reinforcement learning with deep learning, has been developed to overcome the shortcomings. In this survey, we first give a tutorial of deep reinforcement learning from fundamental concepts to advanced models. Then, we review deep reinforcement learning approaches proposed to address emerging issues in communications and networking. The issues include dynamic network access, data rate control, wireless caching, data offloading, network security, and connectivity preservation which are all important to next generation networks such as 5G and beyond. Furthermore, we present applications of deep reinforcement learning for traffic routing, resource sharing, and data collection. Finally, we highlight important challenges, open issues, and future research directions of applying deep reinforcement learning.

332 citations

01 Jan 2001
TL;DR: Some of the technology and costs relevant to pricing access to the Internet are described and a possible smart-market mechanism for pricing traffic on the Internet is suggested.
Abstract: This is a preliminary version of a paper prepared for the conference ‘‘Public Access to the Internet,’’ JFK School of Government, May 26--27 , 1993. We describe some of the technology and costs relevant to pricing access to the Internet and suggest a possible smart-market mechanism for pricing traffic on the Internet.

231 citations

Journal ArticleDOI
TL;DR: Simulation results demonstrate that the proposed cooperative caching system can reduce the system cost, as well as the content delivery latency, and improve content hit ratio, as compared to the noncooperative and random edge caching schemes.
Abstract: In this article, we propose a cooperative edge caching scheme, a new paradigm to jointly optimize the content placement and content delivery in the vehicular edge computing and networks, with the aid of the flexible trilateral cooperations among a macro-cell station, roadside units, and smart vehicles. We formulate the joint optimization problem as a double time-scale Markov decision process (DTS-MDP), based on the fact that the time-scale of content timeliness changes less frequently as compared to the vehicle mobility and network states during the content delivery process. At the beginning of the large time-scale, the content placement/updating decision can be obtained according to the content popularity, vehicle driving paths, and resource availability. On the small time-scale, the joint vehicle scheduling and bandwidth allocation scheme is designed to minimize the content access cost while satisfying the constraint on content delivery latency. To solve the long-term mixed integer linear programming (LT-MILP) problem, we propose a nature-inspired method based on the deep deterministic policy gradient (DDPG) framework to obtain a suboptimal solution with a low computation complexity. The simulation results demonstrate that the proposed cooperative caching system can reduce the system cost, as well as the content delivery latency, and improve content hit ratio, as compared to the noncooperative and random edge caching schemes.

212 citations