scispace - formally typeset
Search or ask a question
Author

Kyung Min Lim

Bio: Kyung Min Lim is an academic researcher from Ewha Womans University. The author has contributed to research in topics: Medicine & Atopic dermatitis. The author has an hindex of 35, co-authored 239 publications receiving 4087 citations. Previous affiliations of Kyung Min Lim include Chung-Ang University & Chungbuk National University.


Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that lysophosphatidic acid (LPA), an important lipid mediator in various pathophysiological processes, induces PS exposure and procoagulant microvesicle generation in erythrocytes, which represent a biological significance resulting in induction of thrombogenic activity.
Abstract: Objective— Although erythrocytes have been suggested to play a role in blood clotting, mediated through phosphatidylserine (PS) exposure and/or PS-bearing microvesicle generation, an endogenous substance that triggers the membrane alterations leading to a procoagulant activity in erythrocytes has not been reported. We now demonstrated that lysophosphatidic acid (LPA), an important lipid mediator in various pathophysiological processes, induces PS exposure and procoagulant microvesicle generation in erythrocytes, which represent a biological significance resulting in induction of thrombogenic activity. Methods and Results— In human erythrocytes, LPA treatment resulted in PS exposure on remnant cells and PS-bearing microvesicle generation in a concentration-dependent manner. Consistent with the microvesicle generation, scanning electron microscopic study revealed that LPA treatment induced surface changes, alteration of normal discocytic shape into echinocytes followed by spherocytes. Surprisingly, chelation of intracellular calcium did not affect LPA-induced PS exposure and microvesicle generation. On the other hand, protein kinase C (PKC) inhibitors significantly reduced PS exposure and microvesicle generation induced by LPA, reflecting the role of calcium-independent PKC. Activation of PKC was confirmed by Western blot analysis showing translocation of calcium-independent isoform, PKCζ, to erythrocyte membrane. The activity of flippase, which is important in the maintenance of membrane asymmetry, was also inhibited by LPA. Furthermore, LPA-exposed erythrocytes actually potentiated the thrombin generation as determined by prothrombinase assay and accelerated the coagulation process initiated by recombinant human tissue factor in plasma. The adherence of erythrocytes to endothelial cells, another important feature of thrombogenic process, was also stimulated by LPA treatment. Conclusion— These results suggested that LPA-exposed erythrocytes could make an important contribution to thrombosis mediated through PS exposure and procoagulant microvesicle generation.

316 citations

Journal ArticleDOI
TL;DR: In freshly isolated human platelets, nano Ag induced platelet aggregation and procoagulant activation evident by increased phosphatidylserine exposure and thrombin generation, suggesting that nano Ag, indeed, does enhance thrombus formation through platelet activation.
Abstract: Despite the wide use of silver nanoparticles (nano Ag), its toxicity still remains poorly understood. In this report, nano Ag induced an increase in platelet aggregation and procoagulant activation which are the key contributors to thrombotic diseases. In freshly isolated human platelets, nano Ag induced platelet aggregation and procoagulant activation evident by increased phosphatidylserine exposure and thrombin generation. Interestingly, the sub-threshold level of thrombin enhanced nano Ag-induced platelet activation significantly indicating that the prothrombotic effects of nano Ag might be further potentiated in activated platelets. An increase in intracellular calcium mediated nano Ag induced platelet activation and P-selectin expression, and serotonin release was also enhanced by nano Ag. Consistent with the in vitro results, exposure to nano Ag (0.05-0.1 mg/kg i.v. or 5-10 mg/kg intratracheal instillation) in vivo enhanced venous thrombus formation, platelet aggregation, and phosphatidylserine externalization ex vivo in rats suggesting that nano Ag, indeed, does enhance thrombus formation through platelet activation.

122 citations

Journal ArticleDOI
TL;DR: It is demonstrated that SFN downregulated TLR4 signaling through the suppression of oligomerization process in a thiol-dependent manner, presenting a novel mechanism for beneficial effects of SFN and a novel anti-inflammatory target in TLR 4 signaling.
Abstract: TLRs are pattern recognition receptors that detect invading microorganisms and nonmicrobial endogenous molecules to trigger immune and inflammatory responses during host defense and tissue repair. TLR activity is closely linked to the risk of many inflammatory diseases and immune disorders. Therefore, TLR signaling pathways can provide efficient therapeutic targets for chronic diseases. Sulforaphane (SFN), an isothiocyanate, has been well known for its anti-inflammatory activities. In this study, we investigated the modulation of TLR activity by SFN and the underlying mechanism. SFN suppressed ligand-induced and ligand-independent TLR4 activation because it prevented IL-1R-associated kinase-1 degradation, activation of NF-kappaB and IFN regulatory factor 3, and cyclooxygenase-2 expression induced by LPS or overexpression of TLR4. Receptor oligomerization, which is one of the initial and critical events of TLR4 activation, was suppressed by SFN, resulting in the downregulation of NF-kappaB activation. SFN formed adducts with cysteine residues in the extracellular domain of TLR4 as confirmed by liquid chromatography-tandem mass spectrometry analysis and the inhibitory effects of SFN on oligomerization and NF-kappaB activation were reversed by thiol donors (DTT and N-acetyl-L-cysteine). These suggest that the reactivity of SFN to sulfhydryl moiety contributes to its inhibitory activities. Blockade of TLR4 signaling by SFN resulted in the reduced production of inflammatory cytokines and the decreased dermal inflammation and edema in vivo in experimental inflammatory animal models. Collectively, our results demonstrated that SFN downregulated TLR4 signaling through the suppression of oligomerization process in a thiol-dependent manner. These present a novel mechanism for beneficial effects of SFN and a novel anti-inflammatory target in TLR4 signaling.

108 citations

Journal ArticleDOI
TL;DR: In this article, the pharmacokinetics of ginsenoside Re, Rg1 and Rh1 in mouse serum were studied following the intravenous and oral administration of pure ginseng berry extract in mouse with doses of 10 and 50 mg/kg using ultra performance liquid chromatography mass spectrometric (UPLC/MS) method which can simultaneously determine ginsene re, rg1, and rh1.

103 citations

Journal ArticleDOI
TL;DR: AdipoRon may prevent lipotoxicity in the kidney particularly in both GECs and podocytes through an improvement in lipid metabolism, as shown by the ratio of ceramide to sphingosines, and further contribute to prevent deterioration of renal function, independent of the systemic effects of adiponectin.
Abstract: Background Adiponectin is known to take part in the regulation of energy metabolism. AdipoRon, an orally-active synthetic adiponectin agonist, binds to both adiponectin receptors (AdipoR)1/R2 and ameliorates diabetic complications. Among the lipid metabolites, the ceramide subspecies of sphingolipids have been linked to features of lipotoxicity, including inflammation, cell death, and insulin resistance. We investigated the role of AdipoRon in the prevention and development of type 2 diabetic nephropathy. Methods AdipoRon (30 mg/kg) was mixed into the standard chow diet and provided to db/db mice (db + AdipoRon, n = 8) and age-matched male db/m mice (dm + AdipoRon, n = 8) from 17 weeks of age for 4 weeks. Control db/db (db cont, n = 8) and db/m mice (dm cont, n = 8) were fed a normal diet of mouse chow. Results AdipoRon-fed db/db mice showed a decreased amount of albuminuria and lipid accumulation in the kidney with no significant changes in serum adiponectin, glucose, and body weight. Restoring expression of adiponectin receptor-1 and -2 in the renal cortex was observed in db/db mice with AdipoRon administration. Consistent up-regulation of phospho-Thr172 AMP-dependent kinase (AMPK), peroxisome proliferative-activated receptor α (PPARα), phospho-Thr473 Akt, phospho-Ser79Acetyl-CoA carboxylase (ACC), and phospho-Ser1177 endothelial NO synthase (eNOS), and down-regulation of protein phosphatase 2A (PP2A), sterol regulatory element-binding protein-1c (SREBP-1c), and inducible nitric oxide synthase (iNOS) were associated within the same group. AdipoRon lowered cellular ceramide levels by activation of acid ceramidase, which normalized ceramide to sphingosine-1 phosphate (S1P) ratio. In glomerular endothelial cells (GECs) and podocytes, AdipoRon treatment markedly decreased palmitate-induced lipotoxicity, which ultimately ameliorated oxidative stress and apoptosis. Conclusions AdipoRon may prevent lipotoxicity in the kidney particularly in both GECs and podocytes through an improvement in lipid metabolism, as shown by the ratio of ceramide to sphingosines, and further contribute to prevent deterioration of renal function, independent of the systemic effects of adiponectin. The reduction in oxidative stress and apoptosis by AdipoRon provides protection against renal damage, thereby ameliorating endothelial dysfunction in type 2 diabetic nephropathy.

98 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A critical review of the biophysicochemical properties of various nanomaterials with emphasis on currently available toxicology data and methodologies for evaluating nanoparticle toxicity suggests that NPs may need to be sequestered into products so that the NPs are not released into the atmosphere during the product's life or during recycling.
Abstract: Nanoscience has matured significantly during the last decade as it has transitioned from bench top science to applied technology. Presently, nanomaterials are used in a wide variety of commercial products such as electronic components, sports equipment, sun creams and biomedical applications. There are few studies of the long-term consequences of nanoparticles on human health, but governmental agencies, including the United States National Institute for Occupational Safety and Health and Japan's Ministry of Health, have recently raised the question of whether seemingly innocuous materials such as carbon-based nanotubes should be treated with the same caution afforded known carcinogens such as asbestos. Since nanomaterials are increasing a part of everyday consumer products, manufacturing processes, and medical products, it is imperative that both workers and end-users be protected from inhalation of potentially toxic NPs. It also suggests that NPs may need to be sequestered into products so that the NPs are not released into the atmosphere during the product's life or during recycling. Further, non-inhalation routes of NP absorption, including dermal and medical injectables, must be studied in order to understand possible toxic effects. Fewer studies to date have addressed whether the body can eventually eliminate nanomaterials to prevent particle build-up in tissues or organs. This critical review discusses the biophysicochemical properties of various nanomaterials with emphasis on currently available toxicology data and methodologies for evaluating nanoparticle toxicity (286 references).

1,138 citations

01 Jan 2016

950 citations

Journal ArticleDOI
TL;DR: This review traces the origins of NSAIDs, their mechanism of action at the molecular level such as cyclooxygenase (COX) inhibition, development of selective COX-2 inhibitors, their adverse cardiovascular effects, and some recent developments targeted to the design of effective anti-inflammatory agents with reduced side effects.
Abstract: Purpose. NSAIDs constitute an important class of drugs with therapeutic applications that have spanned several centuries. Treatment of inflammatory conditions such as rheumatoid arthritis (RA) and osteoarthritis (OA) starting from the classic drug aspirin to the recent rise and fall of selective COX-2 inhibitors has provided an enthralling evolution. Efforts to discover an ultimate magic bullet to treat inflammation continues to be an important drug design challenge. This review traces the origins of NSAIDs, their mechanism of action at the molecular level such as cyclooxygenase (COX) inhibition, development of selective COX-2 inhibitors, their adverse cardiovascular effects, and some recent developments targeted to the design of effective anti-inflammatory agents with reduced side effects. Methods. Literature data is presented describing important discoveries pertaining to the sequential development of classical NSAIDs and then selective COX-2 inhibitors, their mechanism of action, the structural basis for COX inhibition, and recent discoveries. Results. A brief history of the development of NSAIDs and the market withdrawal of selective COX-2 inhibitors is explained, followed by the description of prostaglandin biosynthesis, COX isoforms, structure and function. The structural basis for COX-1 and COX-2 inhibition is described along with methods used to evaluate COX-1/COX-2 inhibition. This is followed by a section that encompasses the major chemical classes of selective COX-2 inhibitors. The final section describes briefly some of the recent advances toward developing effective anti-inflammatory agents such as nitric oxide donor NO-NSAIDs, dual COX/LOX inhibitors and anti-TNF therapy. Conclusions. A great deal of progress has been made toward developing novel anti-inflammatory agents. In spite of the tremendous advances in the last decade, the design and development of a safe, effective and economical therapy for treating inflammatory conditions still presents a major challenge.

634 citations

Journal ArticleDOI
TL;DR: The effects of arsenic on the human body with a main focus on assorted organ systems with respective disease conditions are outlined and underlying mechanisms of disease development in each organ system due to arsenic have been explored.

601 citations