scispace - formally typeset
Search or ask a question
Author

L.A. Dissado

Bio: L.A. Dissado is an academic researcher from University of Leicester. The author has contributed to research in topics: Space charge & Dielectric. The author has an hindex of 44, co-authored 270 publications receiving 8412 citations. Previous affiliations of L.A. Dissado include Australian National University & University of London.


Papers
More filters
Book
01 Jan 1992
TL;DR: In this paper, the physical and chemical structure of polymers and their breakdown are discussed, along with the stochastic nature of break-down from empirical and modelling viewpoints, and practical implications and strategies for engineers.
Abstract: The book is in five parts: Part I introduces the physical and chemical structure of polymers and their breakdown; Part II reviews electrical degradation in polymers, and Part III reviews conduction and deterministic breakdown in solids. Part IV discusses the stochastic nature of break-down from empirical and modelling viewpoints, and Part V indicates practical implications and strategies for engineers. Much of the discussion applies to non-crystalline materials generally.

1,177 citations

Journal ArticleDOI
TL;DR: In this article, the effect of trapped space charges on the aging of polymeric insulating materials subjected to thermo-electrical stress is investigated, and the model which derives from this approach is characterized by electrical and thermal thresholds, its parameters have a physical background, and it can be cast into a probabilistic framework.
Abstract: An investigation of the effect of trapped space charges on the aging of polymeric insulating materials subjected to thermo-electrical stress is reported in this paper. Possible scenarios of degradation mechanisms, thermally activated, but accelerated by the presence of space charges, are examined. The model which derives from this approach has some interesting features: it is characterized by electrical and thermal thresholds, its parameters have a physical background, it can be cast into a probabilistic framework. Acceleration of aging due to space charges is attributed to a reduction of the free-energy barrier to degradation, seen as a local partially-reversible reaction, which is caused by energy stored in space-charge centers. The validity of the model is limited to dc voltage, and to the time of formation of microcavity-crazes, rather than to breakdown times, since other mechanisms will occur under electrical field once large enough cavities are formed in the insulation. The model is applied to the results of thermo-electrical life tests performed on PET, showing very good fitting, as well as interesting relationships between parameter estimates and insulation morphology. It is shown that the model can also fit well to ac life data, where it takes on a phenomenological meaning.

363 citations

Journal ArticleDOI
TL;DR: In this article, an interpretation of the anomalous low-frequency dispersion process is presented which is based on a cluster description of the structural ordering and fluctuation in carrier-dominated dielectrics.
Abstract: An interpretation of the anomalous low-frequency dispersion process is presented which is based on a cluster description of the structural ordering and fluctuation in carrier-dominated dielectrics. It is shown that this form of response occurs for systems of low spatial dimensionality and generates a sample-size-dependent conductivity. The relationship of the mechanism to that of power-law noise in electrical systems is identified and its structural interpretation explored. Particular features of hydrogen-bonded systems are described in which the dispersion is likely to be important in a biological context.

305 citations

Journal ArticleDOI
TL;DR: In this article, a new theory is proposed for the explanation of observed relaxation phenomena, which differs significantly from theories suggested by the authors before, and is based on a model of structural organization of macroscopically sized samples of imperfectly structured materials, both solids and liquids.
Abstract: A new theory is proposed for the explanation of observed relaxation phenomena, which differs significantly from theories suggested by the authors before. The theory is based on a model of structural organization of macroscopically sized samples of imperfectly structured materials, both solids and liquids, and is intermediate in character. In terms of the model, a microscopic structure is maintained over a cluster containing a number of microscopic units, with an array of clusters described by a steady-state distribution completing the macroscopic picture. The structural regularity of each level of morphological organization is precisely defined by a coarse-grained index, which is given a thermodynamic interpretation in terms of binding energies and configurational entropy. The limiting cases of an ideal liquid and a perfect crystal are recovered as asymptotic extremes in terms of this definition. The consequences of this model for the relaxation dynamics of the structure are examined and it is shown that prepared fluctuations decay in a time-power law manner as coupled zero-point motions evolve either within clusters or between clusters, with a power determined by the relevant regularity index. As a result, the origin of power law noise in materials is explained in terms of configurational entropy, and its relation with gaussian and white noise, which appear as asymptotic limits, outlined. The shape of the steady-state distribution of the array of clusters is also determined without any a priori assumptions, and it is shown to range from an unbounded form to a δ function as the regularity of the array superstructure increases. Experimental examples of dielectric relaxation spectroscopy have been used to illustrate these structural concepts and outline the way in which this technique can be used to deduce the structural organization of the sample. Finally, a short description is given of some commonly observed forms of response and their structural interpretation.

271 citations

Journal ArticleDOI
TL;DR: A review of recent developments made in the understanding of the electrical tree mechanism is presented and the chaotic nature of the tree propagation mechanism is discussed both through experimental data and the results of a completely deterministic theoretical model.
Abstract: A review of recent developments made in the understanding of the electrical tree mechanism is presented. The life of the tree is covered from initiation, through propagation, to long-term changes in shape. The initiation process is examined in terms of the injection of space charge and its ability to transfer energy to the polymer to create damage. Theoretical models for the processes involved are assessed in terms of the experimental data and an outline for the sequence of events in tree initiation developed. The inter-relationship between tree discharges, tree propagation, and tree shape is discussed. Theoretical models for these processes are evaluated in terms of their ability to reproduce experimental data, especially tree shapes and discharge sequences in time and space. The chaotic nature of the tree propagation mechanism is discussed both through experimental data and the results of a completely deterministic theoretical model. Some special features of electrical trees such as the existence of conducting trees, acceleration at long times and slow growth in thick insulation are briefly touched upon. Finally a summary of the state of the art is presented.

270 citations


Cited by
More filters
Book
01 Jan 1983
TL;DR: In this paper, a broad-brush view of dielectric relaxation in solids is presented, making use of the existence of a universality of Dielectric response regardless of a wide diversity of materials and structures with dipolar as well as charge-carrier polarization.
Abstract: This review presents a wide-ranging broad-brush picture of dielectric relaxation in solids, making use of the existence of a `universality' of dielectric response regardless of a wide diversity of materials and structures, with dipolar as well as charge-carrier polarization. The review of the experimental evidence includes extreme examples of highly conducting materials showing strongly dispersive behaviour, low-loss materials with a `flat', frequency-independent susceptibility, dipolar loss peaks etc. The surprising conclusion is that despite the evident complexity of the relaxation processes certain very simple relations prevail and this leads to a better insight into the nature of these processes.

4,752 citations

Journal ArticleDOI
TL;DR: This review first outlines the crucial issues in the nanodielectric field and then focuses on recent remarkable research developments in the fabrication of FNDMs with special constitutents, molecular structures, and microstructures.
Abstract: Study of flexible nanodielectric materials (FNDMs) with high permittivity is one of the most active academic research areas in advanced functional materials. FNDMs with excellent dielectric properties are demonstrated to show great promise as energy-storage dielectric layers in high-performance capacitors. These materials, in common, consist of nanoscale particles dispersed into a flexible polymer matrix so that both the physical/chemical characteristics of the nanoparticles and the interaction between the nanoparticles and the polymers have crucial effects on the microstructures and final properties. This review first outlines the crucial issues in the nanodielectric field and then focuses on recent remarkable research developments in the fabrication of FNDMs with special constitutents, molecular structures, and microstructures. Possible reasons for several persistent issues are analyzed and the general strategies to realize FNDMs with excellent integral properties are summarized. The review further highlights some exciting examples of these FNDMs for power-energy-storage applications.

1,131 citations

Journal ArticleDOI
TL;DR: In this article, a multi-core model with the far-field effect was proposed to explain the dielectric and electrical insulation properties of polyamide layered silicate nanocomposites.
Abstract: A multi-core model, i.e. a simplified term of a multi-layered core model, is proposed as a working hypothesis to understand various properties and phenomena that polymer nanocomposites exhibit as dielectrics and electrical insulation. It gives fine structures to what are called "interaction zones". An interfacial layer of several tens nm is multi-layered, which consists of a bonded layer, a bound layer, and a loose layer. In addition, the Gouy-Chapman diffuse layer with the Debye shielding length of several tens to 100 nm is superimposed in the interfacial layer to cause a far-field effect. Nano-particles may interact electrically with the nearest neighbors each other due to this effect, resulting in possible collaborative effect. Such a multi-core model with the far-field effect is discussed, for example, to explain partial discharge (PD) resistance of polyamide layered silicate nanocomposites, and is verified to demonstrate its effectiveness.

1,065 citations

Journal ArticleDOI
TL;DR: In this paper, the authors summarize the principles of dielectric energy-storage applications, and recent developments on different types of Dielectrics, namely linear dielectrics (LDE), paraelectric, ferroelectrics, and antiferro electrics, focusing on perovskite lead-free dielectors.

941 citations

Journal ArticleDOI
TL;DR: In this paper, a multi-core model with the far-distance effect, which is closely related to an "interaction zones", has been proposed from consideration of mesoscopic analysis of electrical and chemical structures of an existing interface with finite thickness.
Abstract: Polymer nanocomposites possess promising high performances as engineering materials, if they are prepared and fabricated properly. Some work has been recently done on such polymer nanocomposites as dielectrics and electrical insulation. This was reviewed in 2004 based on the literatures published up to 2003. New significant findings have been added since then. Furthermore, a multi-core model with the far-distance effect, which is closely related to an "interaction zones", has been proposed from consideration of mesoscopic analysis of electrical and chemical structures of an existing interface with finite thickness. It is speculatively examined in the paper how the model works for various properties and phenomena already found in nanocomposites as dielectrics focusing on electrical characteristics, resistance to high voltage environment, and thermal properties.

903 citations