scispace - formally typeset
Search or ask a question
Author

L. A. Giraldo

Other affiliations: University of León
Bio: L. A. Giraldo is an academic researcher from National University of Colombia. The author has contributed to research in topics: Fibrolytic bacterium & Rumen. The author has an hindex of 5, co-authored 7 publications receiving 285 citations. Previous affiliations of L. A. Giraldo include University of León.

Papers
More filters
Journal ArticleDOI
TL;DR: The results indicate that supplementing ENZ directly into the rumen increased the fibrolytic activity and stimulated the growth of cellulolytic bacteria without a prefeeding feed-enzyme interaction.
Abstract: Six rumen-fistulated Merino sheep were used in a crossover design experiment to evaluate the effects of an exogenous fibrolytic enzyme preparation (12 g/d; ENZ), delivered directly into the rumen, on diet digestibility, ruminal fermentation, and microbial protein synthesis. The enzyme contained endoglucanase and xylanase activities. Sheep were fed a mixed grass hay:concentrate (70:30; DM basis) diet at a daily rate of 46.1 g/kg of BW 0.75 . Samples of grass hay were incubated in situ in the rumen of each sheep to measure DM and NDF degradation. The supplementation with ENZ did not affect diet digestibility (P = 0.30 to 0.66), urinary excretion of purine derivatives (P = 0.34), ruminal pH (P = 0.46), or concentrations of NH 3 -N (P = 0.69) and total VFA (P = 0.97). In contrast, molar proportion of propionate were greater (P = 0.001) and acetate:propionate ratio was lower (P < 0.001) in ENZ-supplemented sheep. In addition, ENZ supplementation tended to increase (P = 0.06) numbers of cellulolytic bacteria at 4 h after feeding. Both the ruminally insoluble potentially degradable fraction of grass hay DM and its fractional rate of degradation were increased (P = 0.002 and 0.05, respectively) by ENZ treatment. Supplementation with ENZ also increased (P = 0.01 to 0.02) effective and potential degradability of grass hay DM and NDF. Ruminal fluid endoglucanase and xylanase activities were greater (P < 0.001 and 0.03, respectively) in ENZ-supplemented sheep than in control animals. It was found that ENZ supplementation did not affect either exoglucanase (P = 0.12) or amylase (P = 0.83) activity. The results indicate that supplementing ENZ directly into the rumen increased the fibrolytic activity and stimulated the growth of cellulolytic bacteria without a prefeeding feed-enzyme interaction.

117 citations

Journal ArticleDOI
TL;DR: In this article, the effects of three fibrolytic enzymes (xylanase from Trichoderma viride (XYL), endoglucanase from Aspergillus niger (ASP) and Trichodorma longibrachiatum (TR)) on the fermentation of three substrates composed of grass hay:

95 citations

Journal ArticleDOI
TL;DR: The results show that the TRI and MIX treatments enhanced in vitro fermentation by increasing substrate fiber degradation, VFA production, and ruminal microbial growth.
Abstract: Two incubation runs were carried out with a Rusitec system to investigate the effects of 2 exogenous pure cellulases on ruminal microbial growth and fermentation of a 70:30 grass hay:concentrate (DM basis) substrate. The substrate was sprayed with buffer (control; pH = 6.5), a cellulase from Trichoderma longibrachiatum (TRI), a cellulase from Aspergillus niger (ASP), or a 1:1 mixture of both cellulases (MIX) 24 h before being placed in the fermenters. Enzymes were applied at a rate of 30 endoglucanase units/g of substrate DM. Treating the substrate with enzymes reduced substrate NDF and ADF content (P < 0.001 to P = 0.002) and increased DM, NDF, and ADF disappearance after 6 and 24 h of incubation (P < 0.001 to P = 0.004) but not after 48 h of incubation. Daily VFA production was increased (P = 0.004) by 15, 9, and 15% for TRI, ASP, and MIX, respectively, with half of the increase being due to production of acetate. All enzyme treatments augmented (P = 0.009) methane production, but none of them altered the methane:VFA ratio (P = 0.70). There were no differences (P = 0.80) among treatments in the daily flow of solid-associated microorganisms, as measured using 15 N as a microbial marker. Although the TRI and MIX treatments increased (P < 0.05) the daily flow of liquid-associated microorganisms and the proportion of microbial N in the solid residue after 48 h of incubation, no effects were observed (P = 0.92 and P = 0.95, respectively) for the ASP treatment. The results show that the TRI and MIX treatments enhanced in vitro fermentation by increasing substrate fiber degradation, VFA production, and ruminal microbial growth. The lack of differences between TRI and MIX in most of the measured variables indicates that treating the substrate with a mixture of both cellulases did not further improve the effects of the TRI treatment.

62 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of method of delivery of a solution contaning cellulase on the in vitro rumen fermentation (24 h) of three tropical forages was investigated, and the results indicate that 24 h pre-treatment of forages with cellulase could increase the effi cacy of this enzyme, but the incubated forage affects the results.
Abstract: The objective of this study was to investigate the effect of method of delivery of a solution contaning cellulase on the in vitro rumen fermentation (24 h) of three tropical forages. Enzyme was applied to forages either at the time of incubation or 24 h before. Both cellulase treatments increased (P<0.05) acetate, propionate and total VFA production, as well as neutral-detergent fi bre degradability (NDFD) with all forages. NDFD increased signifi cantly (P<0.05) with all forages when 24 h pre-treatment of forage with the enzyme was allowed, and this pre-treatment also tended to increase (P<0.05) gas production with two of the three forages. The results indicate that 24 h pre-treatment of forages with cellulase could increase the effi cacy of this enzyme, but the incubated forage affects the results.

25 citations

Journal ArticleDOI
TL;DR: Results showed clearly that effectiveness of enzymes varied with the incubated forage and further study is warranted to investigate specific, optimal enzyme-substrate combinations.
Abstract: The effects of three treatments of fibrolytic enzymes (cellulase from Trichoderma longibrachiatum (CEL), xylanase from rumen micro-organisms (XYL) and a 1:1 mixture of CEL and XYL (MIX) on the in vitro fermentation of two samples of Pennisetum clandestinum (P1 and P2), two samples of Dichanthium aristatum (D1 and D2) and one sample of each Acacia decurrens and Acacia mangium (A1 and A2) were investigated. The first experiment compared the effects of two methods of applying the enzymes to forages, either at the time of incubation or 24 h before, on the in vitro gas production. In general, the 24 h pre-treatment resulted in higher values of gas production rate, and this application method was chosen for a second study investigating the effects of enzymes on chemical composition and in vitro fermentation of forages. The pre-treatment with CEL for 24 h reduced (p < 0.05) the content of neutral detergent fibre (NDF) of P1, P2, D1 and D2, and that of MIX reduced the NDF content of P1 and D1, but XYL had no effect on any forage. The CEL treatment increased (p < 0.05) total volatile fatty acid (VFA) production for all forages (ranging from 8.6% to 22.7%), but in general, no effects of MIX and XYL were observed. For both P. clandestinum samples, CEL treatment reduced (p < 0.05) the molar proportion of acetate and increased (p < 0.05) that of butyrate, but only subtle changes in VFA profile were observed for the rest of forages. Under the conditions of the present experiment, the treatment of tropical forages with CEL stimulated their in vitro ruminal fermentation, but XYL did not produce any positive effect. These results showed clearly that effectiveness of enzymes varied with the incubated forage and further study is warranted to investigate specific, optimal enzyme-substrate combinations.

18 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The objectives of this review are to evaluate options that have been demonstrated to mitigate enteric CH4 emissions per unit of ECM (CH4/ECM) from dairy cattle on a quantitative basis and in a sustained manner and to integrate approaches in genetics, feeding and nutrition, physiology, and health to emphasize why herd productivity, not individual animal productivity, is important to environmental sustainability.

638 citations

Journal ArticleDOI
TL;DR: The use of fungi or enzyme treatments is expected to be a more practical and environmental-friendly approach for enhancing the nutritive value of rice straw and can be cost-effective in the future.
Abstract: This paper gives an overview of the availability, nutritive quality, and possible strategies to improve the utilization of rice straw as a feed ingredient for ruminants. Approximately 80% of the rice in the world is grown by small-scale farmers in developing countries, including South East Asia. The large amount of rice straw as a by-product of the rice production is mainly used as a source of feed for ruminant livestock. Rice straw is rich in polysaccharides and has a high lignin and silica content, limiting voluntary intake and reducing degradability by ruminal microorganisms. Several methods to improve the utilization of rice straw by ruminants have been investigated in the past. However, some physical treatments are not practical because of the requirement for machinery or treatments are not economical feasible for the farmers. Chemical treatments, such as NaOH, NH3 or urea, currently seem to be more practical for on-farm use. Alternative treatments to improve the nutritive value of rice straw are the use of ligninolytic fungi (white-rot fungi), with their extracellular ligninolytic enzymes, or specific enzymes degrading cellulose and/or hemicellulose. The use of fungi or enzyme treatments is expected to be a more practical and environmental-friendly approach for enhancing the nutritive value of rice straw and can be cost-effective in the future. Using fungi and enzymes might be combined with the more classical chemical or physical treatments. However, available data on using fungi and enzymes for improving the quality of rice straw are relatively scarce.

244 citations

Journal ArticleDOI
TL;DR: Various microbial cellulases are reviewed with a focus on their classification with mechanistic aspects of cellulase hydrolytic action, insights into novel approaches for determining cellulase activity, and potential industrial applications of cellulases.
Abstract: Microbial cellulases have been receiving worldwide attention, as they have enormous potential to process the most abundant cellulosic biomass on this planet and transform it into sustainable biofuels and other value added products. The synergistic action of endoglucanases, exoglucanases, and β-glucosidases is required for the depolymerization of cellulose to fermentable sugars for transformation in to useful products using suitable microorganisms. The lack of a better understanding of the mechanisms of individual cellulases and their synergistic actions is the major hurdles yet to be overcome for large-scale commercial applications of cellulases. We have reviewed various microbial cellulases with a focus on their classification with mechanistic aspects of cellulase hydrolytic action, insights into novel approaches for determining cellulase activity, and potential industrial applications of cellulases.

153 citations

Journal ArticleDOI
TL;DR: This exogenous enzyme product, supplemented daily to the TMR of cows in early lactation, increased milk production due to positive effects on nutrient intake and digestibility, extent of ruminal fermentation and microbial protein synthesis.

141 citations

Journal ArticleDOI
TL;DR: The results indicate that supplementing ENZ directly into the rumen increased the fibrolytic activity and stimulated the growth of cellulolytic bacteria without a prefeeding feed-enzyme interaction.
Abstract: Six rumen-fistulated Merino sheep were used in a crossover design experiment to evaluate the effects of an exogenous fibrolytic enzyme preparation (12 g/d; ENZ), delivered directly into the rumen, on diet digestibility, ruminal fermentation, and microbial protein synthesis. The enzyme contained endoglucanase and xylanase activities. Sheep were fed a mixed grass hay:concentrate (70:30; DM basis) diet at a daily rate of 46.1 g/kg of BW 0.75 . Samples of grass hay were incubated in situ in the rumen of each sheep to measure DM and NDF degradation. The supplementation with ENZ did not affect diet digestibility (P = 0.30 to 0.66), urinary excretion of purine derivatives (P = 0.34), ruminal pH (P = 0.46), or concentrations of NH 3 -N (P = 0.69) and total VFA (P = 0.97). In contrast, molar proportion of propionate were greater (P = 0.001) and acetate:propionate ratio was lower (P < 0.001) in ENZ-supplemented sheep. In addition, ENZ supplementation tended to increase (P = 0.06) numbers of cellulolytic bacteria at 4 h after feeding. Both the ruminally insoluble potentially degradable fraction of grass hay DM and its fractional rate of degradation were increased (P = 0.002 and 0.05, respectively) by ENZ treatment. Supplementation with ENZ also increased (P = 0.01 to 0.02) effective and potential degradability of grass hay DM and NDF. Ruminal fluid endoglucanase and xylanase activities were greater (P < 0.001 and 0.03, respectively) in ENZ-supplemented sheep than in control animals. It was found that ENZ supplementation did not affect either exoglucanase (P = 0.12) or amylase (P = 0.83) activity. The results indicate that supplementing ENZ directly into the rumen increased the fibrolytic activity and stimulated the growth of cellulolytic bacteria without a prefeeding feed-enzyme interaction.

117 citations