scispace - formally typeset
Search or ask a question
Author

L. Alados Arboledas

Bio: L. Alados Arboledas is an academic researcher from University of Granada. The author has contributed to research in topics: Mineral dust & AERONET. The author has an hindex of 7, co-authored 10 publications receiving 456 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors investigated aerosol optical properties during the extreme Saharan dust event detected from 3 to 7 September 2007 over Granada, southern Iberian Peninsula, with both active and passive remote sensing instrumentation from surface and satellite.
Abstract: . This study investigates aerosol optical properties during the extreme Saharan dust event detected from 3 to 7 September 2007 over Granada, southern Iberian Peninsula, with both active and passive remote sensing instrumentation from surface and satellite. The intensity of the event was visualized on the aerosol optical depth series obtained by the sun-photometer Cimel CE 318-4 operated at Granada in the framework of AERONET from August 2004 until December 2008 (level 2 data). A combination of large aerosol optical depth (0.86–1.50) at 500 nm, and reduced Angstrom exponent (0.1–0.25) in the range 440–870 nm, was detected on 6 September during daytime. This Saharan dust event also affected other Iberian Peninsula stations included in AERONET (El Arenosillo and Evora stations), and it was monitored by MODIS instrument on board Aqua satellite. Vertically resolved measurements were performed by a ground-based Raman Lidar and by CALIPSO satellite. During the most intense stage, on 6 September, maximum aerosol backscatter values were a factor of 8 higher than other maxima during this Saharan dust event. Values up to 1.5×10−2 km−1 sr−1 at 355 and 532 nm were detected in the layer with the greatest aerosol load between 3–4 km a.s.l., although aerosol particles were also detected up to 5.5 km a.s.l. In this stage of the event, dust particles at these altitudes showed a backscatter-related Angstrom exponent between –0.44 and 0.53 for the two spectral intervals considered. The results from different measurements (active/passive and ground-based/satellite) reveal the importance of performing multi-instrumental measurements to properly characterize the contribution of different aerosol types from different sources during extreme events. The atmospheric stabilization effect of the aerosol particles has been characterized by computing the solar heating rates using SBDART code.

137 citations

Journal ArticleDOI
TL;DR: In this article, the authors show the four-dimensional (4-D) distribution of the Eyjafjallajokull volcanic cloud in the troposphere over Europe as observed by EARLINET during the entire volcanic event (15 April-26 May 2010).
Abstract: . The eruption of the Icelandic volcano Eyjafjallajokull in April–May 2010 represents a "natural experiment" to study the impact of volcanic emissions on a continental scale. For the first time, quantitative data about the presence, altitude, and layering of the volcanic cloud, in conjunction with optical information, are available for most parts of Europe derived from the observations by the European Aerosol Research Lidar NETwork (EARLINET). Based on multi-wavelength Raman lidar systems, EARLINET is the only instrument worldwide that is able to provide dense time series of high-quality optical data to be used for aerosol typing and for the retrieval of particle microphysical properties as a function of altitude. In this work we show the four-dimensional (4-D) distribution of the Eyjafjallajokull volcanic cloud in the troposphere over Europe as observed by EARLINET during the entire volcanic event (15 April–26 May 2010). All optical properties directly measured (backscatter, extinction, and particle linear depolarization ratio) are stored in the EARLINET database available at http://www.earlinet.org . A specific relational database providing the volcanic mask over Europe, realized ad hoc for this specific event, has been developed and is available on request at http://www.earlinet.org . During the first days after the eruption, volcanic particles were detected over Central Europe within a wide range of altitudes, from the upper troposphere down to the local planetary boundary layer (PBL). After 19 April 2010, volcanic particles were detected over southern and south-eastern Europe. During the first half of May (5–15 May), material emitted by the Eyjafjallajokull volcano was detected over Spain and Portugal and then over the Mediterranean and the Balkans. The last observations of the event were recorded until 25 May in Central Europe and in the Eastern Mediterranean area. The 4-D distribution of volcanic aerosol layering and optical properties on European scale reported here provides an unprecedented data set for evaluating satellite data and aerosol dispersion models for this kind of volcanic events.

91 citations

Journal ArticleDOI
TL;DR: In this article, the results of a comparative test of land surface temperature (LST) algorithms are presented, showing that the Ulivieri et al. algorithm and the Price algorithm are statistically indistinguishable, according to the Kolmogorov-Smirnov test.

90 citations

Journal ArticleDOI
TL;DR: In this article, the horizontal and vertical attenuation of the aerosol, the sky radiance, and the light absorption coefficient of aerosol have been determined at wavelengths in the visible.
Abstract: [1] The horizontal and vertical attenuation of the aerosol, the sky radiance, and the light absorption coefficient of the aerosol have been determined at wavelengths in the visible. From this set of data the following optical characteristics of the atmospheric aerosol could be derived: vertical optical depth, horizontal extinction and absorption coefficient, scattering phase function, asymmetry parameter, and single scattering albedo. Campaigns have been performed in Almeria, Spain, and Vienna, Austria. The aerosol undergoes a considerable variation, as experienced by many other studies. Sometimes the vertical and the horizontal measurements gave similar data; on other days the aerosol at the surface and the aerosol aloft were completely different. The “clearest” aerosol always had the smallest single scattering albedo and thus relatively the highest light absorption. The optical characteristics of the aerosol in the two very different locations were very similar. Using the measured optical data, a radiative transfer calculation was performed, and the radiation reaching the ground was calculated. Comparing the values for the clear aerosol and the days with higher aerosol load, the radiative forcing due to the additional aerosol particles could be determined. The forcing of the aerosol at the ground is always negative, and at the top of the atmosphere it is close to zero or slightly negative. Its dependence on wavelength and zenith angle is presented. The preindustrial aerosol in Europe was estimated, and the forcing due to the present-day aerosol was determined. At the surface it is negative, but at the top of the atmosphere it is close to zero or positive. This is caused by the light absorption of the European aerosol, which is higher than in most other locations.

76 citations

Journal ArticleDOI
01 Feb 2009-Tellus B
TL;DR: In this paper, a long-range transport event of mineral dust from North Africa to South Europe during the Saharan Mineral Dust Experiment (SAMUM) 2006 was observed, and geometrical and optical properties of that dust plume were determined with Sun photometer of the Aerosol Robotic Network (AERONET) and Raman lidar near the North African source region.
Abstract: We observed a long-range transport event of mineral dust from North Africa to South Europe during the Saharan Mineral Dust Experiment (SAMUM) 2006. Geometrical and optical properties of that dust plume were determined with Sun photometer of the Aerosol Robotic Network (AERONET) and Raman lidar near the North African source region, and with Sun photometers of AERONET and lidars of the European Aerosol Research Lidar Network (EARLINET) in the far field in Europe. Extinction-to-backscatter ratios of the dust plume over Morocco and Southern Europe do not differ. Angstrom exponents increase with distance from Morocco. We simulated the transport, and geometrical and optical properties of the dust plume with a dust transport model. The model results and the experimental data show similar times regarding the appearance of the dust plume over each EARLINET site. Dust optical depth from the model agrees in most cases to particle optical depth measured with the Sun photometers. The vertical distribution of the mineral dust could be satisfactorily reproduced, if we use as benchmark the extinction profiles measured with lidar. In some cases we find differences. We assume that insufficient vertical resolution of the dust plume in the model calculations is one reason for these deviations. DOI: 10.1111/j.1600-0889.2008.00400.x

57 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A review of the current status of selected remote sensing algorithms for estimating land surface temperature from thermal infrared (TIR) data is presented in this article, along with a survey of the algorithms employed for obtaining LST from space-based TIR measurements.

1,470 citations

Journal Article
TL;DR: This book presents the separation-of-variables and T-matrix methods of calculating the scattering of electromagnetic waves by particles, and the connection between the theory and the computer programs is reinforced by references in thecomputer programs to equations in the text.
Abstract: This book presents the separation-of-variables and T-matrix methods of calculating the scattering of electromagnetic waves by particles. Analytical details and computer programs are provided for determining the scattering and absorption characteristics of the finite-thickness slab, infinite circular cylinder (normal incidence), general axisymmetric particle, and sphere.The computer programs are designed to generate data that is easy to graph and visualize, and test cases in the book illustrate the capabilities of the programs. The connection between the theory and the computer programs is reinforced by references in the computer programs to equations in the text. This cross-referencing will help the reader understand the computer programs, and, if necessary, modify them for other purposes.

487 citations

Journal ArticleDOI
TL;DR: The European Aerosol Research Lidar Network (EARLINET) as mentioned in this paper was founded as a research project for establishing a quantitative, comprehensive, and statistically significant database for the horizontal, vertical, and tempo-ral distribution of aerosols on a continental scale.
Abstract: The European Aerosol Research Lidar Network, EARLINET, was founded in 2000 as a research project for establishing a quantitative, comprehensive, and statistically significant database for the horizontal, vertical, and tempo- ral distribution of aerosols on a continental scale. Since then EARLINET has continued to provide the most extensive col- lection of ground-based data for the aerosol vertical distribu- tion over Europe. This paper gives an overview of the network's main de- velopments since 2000 and introduces the dedicated EAR- LINET special issue, which reports on the present innova- tive and comprehensive technical solutions and scientific re- sults related to the use of advanced lidar remote sensing tech- niques for the study of aerosol properties as developed within the network in the last 13 years. Since 2000, EARLINET has developed greatly in terms of number of stations and spatial distribution: from 17 sta- tions in 10 countries in 2000 to 27 stations in 16 countries in 2013. EARLINET has developed greatly also in terms of technological advances with the spread of advanced multi- wavelength Raman lidar stations in Europe. The develop- ments for the quality assurance strategy, the optimization of instruments and data processing, and the dissemination of data have contributed to a significant improvement of the net- work towards a more sustainable observing system, with an increase in the observing capability and a reduction of oper- ational costs. Consequently, EARLINET data have already been ex- tensively used for many climatological studies, long-range transport events, Saharan dust outbreaks, plumes from vol- canic eruptions, and for model evaluation and satellite data validation and integration. Future plans are aimed at continuous measurements and near-real-time data delivery in close cooperation with other ground-based networks, such as in the ACTRIS (Aerosols, Clouds, and Trace gases Research InfraStructure Network) www.actris.net, and with the modeling and satellite commu- nity, linking the research community with the operational world, with the aim of establishing of the atmospheric part of the European component of the integrated global observ- ing system.

417 citations

Journal ArticleDOI
X. Durrieu de Madron1, Cécile Guieu2, Richard Sempéré3, Pascal Conan2, Daniel Cossa4, Fabrizio D'Ortenzio2, Claude Estournel5, Frédéric Gazeau2, Christophe Rabouille3, Lars Stemmann2, Sophie Bonnet3, Frédéric Diaz3, Philippe Koubbi2, Olivier Radakovitch6, Marcel Babin2, Melika Baklouti3, Chrystelle Bancon-Montigny7, Sauveur Belviso, Nathaniel Bensoussan, B. Bonsang3, Ioanna Bouloubassi2, Christophe Brunet8, Jean-Francois Cadiou4, Francois Carlotti3, Malik Chami2, Sabine Charmasson4, Bruno Charrière3, Jordi Dachs9, David Doxaran2, Jean-Claude Dutay3, Françoise Elbaz-Poulichet7, M. Eléaume, F. Eyrolles10, Camila Fernandez2, Scott W. Fowler, Patrice Francour11, Jean-Claude Gaertner3, René Galzin1, Stéphane Gasparini2, Jean-François Ghiglione2, J. L. Gonzalez4, Catherine Goyet1, Lionel Guidi2, Katell Guizien2, Lars-Eric Heimbürger2, Stéphan Jacquet3, Wade H. Jeffrey12, Fabien Joux2, P. Le Hir4, Karine Leblanc3, Dominique Lefèvre3, Christophe Lejeusne3, R. Lemé2, Marie-Dominique Loÿe-Pilot13, Marc Mallet5, Laurence Méjanelle2, Frédéric Mélin, C. Mellon4, Bastien Mérigot3, Pierre-Laurent Merle11, Christophe Migon2, William L. Miller14, Laurent Mortier2, Behzad Mostajir7, Laure Mousseau2, Thierry Moutin3, J. Para3, Thierry Perez3, Anne Petrenko3, Jean-Christophe Poggiale3, Louis Marie Prieur2, Mireille Pujo-Pay2, Pulido-Villena2, Patrick Raimbault3, Andrew P. Rees15, Céline Ridame2, Jean-François Rontani3, D. Ruiz Pino2, Marie-Alexandrine Sicre3, Vincent Taillandier2, Christian Tamburini3, Tsuneo Tanaka2, Isabelle Taupier-Letage4, Marc Tedetti3, Pierre Testor2, Hervé Thébault4, Benedicte Thouvenin4, Franck Touratier1, Jacek Tronczynski4, Caroline Ulses5, F. Van Wambeke3, Vincent Vantrepotte16, Sandrine Vaz, Romaric Verney4 
TL;DR: In this article, a review of current functioning and responses of Mediterranean marine biogeochemical cycles and ecosystems with respect to key natural and anthropogenic drivers and to consider the ecosystems' responses to likely changes in physical, chemical and socio-economical forcings induced by global change and by growing anthropogenic pressure at the regional scale.

391 citations

Journal ArticleDOI
TL;DR: In this article, the authors used a statistical approach to estimate Tmax, Tmin and Tavg for a 10-year period based on LST data obtained from MODIS and auxiliary data using a statistical optimization procedure with a mixed bootstrap and jackknife resampling.

358 citations