scispace - formally typeset
Search or ask a question
Author

L. Britnell

Bio: L. Britnell is an academic researcher from University of Manchester. The author has contributed to research in topics: Graphene & Boron nitride. The author has an hindex of 30, co-authored 46 publications receiving 17041 citations.

Papers
More filters
Journal ArticleDOI
24 Feb 2012-Science
TL;DR: A bipolar field-effect transistor that exploits the low density of states in graphene and its one-atomic-layer thickness is reported, which has potential for high-frequency operation and large-scale integration.
Abstract: An obstacle to the use of graphene as an alternative to silicon electronics has been the absence of an energy gap between its conduction and valence bands, which makes it difficult to achieve low power dissipation in the OFF state We report a bipolar field-effect transistor that exploits the low density of states in graphene and its one-atomic-layer thickness Our prototype devices are graphene heterostructures with atomically thin boron nitride or molybdenum disulfide acting as a vertical transport barrier They exhibit room-temperature switching ratios of ≈50 and ≈10,000, respectively Such devices have potential for high-frequency operation and large-scale integration

2,401 citations

Journal ArticleDOI
14 Jun 2013-Science
TL;DR: Transition metal dichalcogenides sandwiched between two layers of graphene produce an enhanced photoresponse, which allows development of extremely efficient flexible photovoltaic devices with photoresponsivity above 0.1 ampere per watt (corresponding to an external quantum efficiency of above 30%).
Abstract: The isolation of various two-dimensional (2D) materials, and the possibility to combine them in vertical stacks, has created a new paradigm in materials science: heterostructures based on 2D crystals. Such a concept has already proven fruitful for a number of electronic applications in the area of ultrathin and flexible devices. Here, we expand the range of such structures to photoactive ones by using semiconducting transition metal dichalcogenides (TMDCs)/graphene stacks. Van Hove singularities in the electronic density of states of TMDC guarantees enhanced light-matter interactions, leading to enhanced photon absorption and electron-hole creation (which are collected in transparent graphene electrodes). This allows development of extremely efficient flexible photovoltaic devices with photoresponsivity above 0.1 ampere per watt (corresponding to an external quantum efficiency of above 30%).

2,209 citations

Journal ArticleDOI
TL;DR: A detailed analysis of the Raman spectra of graphene containing different type of defects is presented, finding that the intensity ratio of the D and D' peak is maximum for sp(3)-defects, it decreases for vacancy-like defects, and it reaches a minimum for boundaries in graphite.
Abstract: Raman spectroscopy is able to probe disorder in graphene through defect-activated peaks. It is of great interest to link these features to the nature of disorder. Here we present a detailed analysis of the Raman spectra of graphene containing different type of defects. We found that the intensity ratio of the D and D′ peak is maximum (∼13) for sp3-defects, it decreases for vacancy-like defects (∼7), and it reaches a minimum for boundaries in graphite (∼3.5). This makes Raman Spectroscopy a powerful tool to fully characterize graphene.

1,716 citations

Journal ArticleDOI
TL;DR: A new generation of field-effect vertical tunnelling transistors where two-dimensional tungsten disulphide serves as an atomically thin barrier between two layers of either mechanically exfoliated or chemical vapour deposition-grown graphene are described.
Abstract: The celebrated electronic properties of graphene(1,2) have opened the way for materials just one atom thick(3) to be used in the post-silicon electronic era(4). An important milestone was the creation of heterostructures based on graphene and other two-dimensional crystals, which can be assembled into three-dimensional stacks with atomic layer precision(5-7). Such layered structures have already demonstrated a range of fascinating physical phenomena(8-71), and have also been used in demonstrating a prototype field-effect tunnelling transistor(12), which is regarded to be a candidate for post-CMOS (complementary metal-oxide semiconductor) technology. The range of possible materials that could be incorporated into such stacks is very large. Indeed, there are many other materials with layers linked by weak van der Waals forces that can be exfoliated(3,13) and combined together to create novel highly tailored heterostructures. Here, we describe a new generation of field-effect vertical tunnelling transistors where two-dimensional tungsten disulphide serves as an atomically thin barrier between two layers of either mechanically exfoliated or chemical vapour deposition-grown graphene. The combination of tunnelling (under the barrier) and thermionic (over the barrier) transport allows for unprecedented current modulation exceeding 1 x 10(6) at room temperature and very high ON current. These devices can also operate on transparent and flexible substrates.

1,617 citations

Journal ArticleDOI
TL;DR: The encapsulation makes graphene practically insusceptible to the ambient atmosphere and, simultaneously, allows the use of boron nitride as an ultrathin top gate dielectric.
Abstract: Devices made from graphene encapsulated in hexagonal boron-nitride exhibit pronounced negative bend resistance and an anomalous Hall effect, which are a direct consequence of room-temperature ballistic transport at a micrometer scale for a wide range of carrier concentrations. The encapsulation makes graphene practically insusceptible to the ambient atmosphere and, simultaneously, allows the use of boron nitride as an ultrathin top gate dielectric.

1,568 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: This work reviews the historical development of Transition metal dichalcogenides, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.
Abstract: Single-layer metal dichalcogenides are two-dimensional semiconductors that present strong potential for electronic and sensing applications complementary to that of graphene.

13,348 citations

Journal ArticleDOI
25 Jul 2013-Nature
TL;DR: With steady improvement in fabrication techniques and using graphene’s springboard, van der Waals heterostructures should develop into a large field of their own.
Abstract: Fabrication techniques developed for graphene research allow the disassembly of many layered crystals (so-called van der Waals materials) into individual atomic planes and their reassembly into designer heterostructures, which reveal new properties and phenomena. Andre Geim and Irina Grigorieva offer a forward-looking review of the potential of layering two-dimensional materials into novel heterostructures held together by weak van der Waals interactions. Dozens of these one-atom- or one-molecule-thick crystals are known. Graphene has already been well studied but others, such as monolayers of hexagonal boron nitride, MoS2, WSe2, graphane, fluorographene, mica and silicene are attracting increasing interest. There are many other monolayers yet to be examined of course, and the possibility of combining graphene with other crystals adds even further options, offering exciting new opportunities for scientific exploration and technological innovation. Research on graphene and other two-dimensional atomic crystals is intense and is likely to remain one of the leading topics in condensed matter physics and materials science for many years. Looking beyond this field, isolated atomic planes can also be reassembled into designer heterostructures made layer by layer in a precisely chosen sequence. The first, already remarkably complex, such heterostructures (often referred to as ‘van der Waals’) have recently been fabricated and investigated, revealing unusual properties and new phenomena. Here we review this emerging research area and identify possible future directions. With steady improvement in fabrication techniques and using graphene’s springboard, van der Waals heterostructures should develop into a large field of their own.

8,162 citations

Journal ArticleDOI
11 Oct 2012-Nature
TL;DR: This work reviews recent progress in graphene research and in the development of production methods, and critically analyse the feasibility of various graphene applications.
Abstract: Recent years have witnessed many breakthroughs in research on graphene (the first two-dimensional atomic crystal) as well as a significant advance in the mass production of this material. This one-atom-thick fabric of carbon uniquely combines extreme mechanical strength, exceptionally high electronic and thermal conductivities, impermeability to gases, as well as many other supreme properties, all of which make it highly attractive for numerous applications. Here we review recent progress in graphene research and in the development of production methods, and critically analyse the feasibility of various graphene applications.

7,987 citations