scispace - formally typeset
L

L. Cerboni Baiardi

Researcher at Istituto Nazionale di Fisica Nucleare

Publications -  35
Citations -  15248

L. Cerboni Baiardi is an academic researcher from Istituto Nazionale di Fisica Nucleare. The author has contributed to research in topics: Gravitational wave & LIGO. The author has an hindex of 24, co-authored 33 publications receiving 12968 citations. Previous affiliations of L. Cerboni Baiardi include University of Pisa.

Papers
More filters
Journal ArticleDOI

Observation of Gravitational Waves from a Binary Black Hole Merger

B. P. Abbott, +1011 more
TL;DR: This is the first direct detection of gravitational waves and the first observation of a binary black hole merger, and these observations demonstrate the existence of binary stellar-mass black hole systems.
Journal ArticleDOI

Binary Black Hole Mergers in the First Advanced LIGO Observing Run

B. P. Abbott, +981 more
- 21 Oct 2016 - 
TL;DR: The first observational run of the Advanced LIGO detectors, from September 12, 2015 to January 19, 2016, saw the first detections of gravitational waves from binary black hole mergers as discussed by the authors.
Journal ArticleDOI

Binary Black Hole Mergers in the first Advanced LIGO Observing Run

B. P. Abbott, +972 more
TL;DR: The first observational run of the Advanced LIGO detectors, from September 12, 2015 to January 19, 2016, saw the first detections of gravitational waves from binary black hole mergers as discussed by the authors.
Journal ArticleDOI

Astrophysical implications of the binary black hole merger gw150914

B. P. Abbott, +964 more
TL;DR: The discovery of the GW150914 with the Advanced LIGO detectors provides the first observational evidence for the existence of binary black-hole systems that inspiral and merge within the age of the Universe as mentioned in this paper.
Journal ArticleDOI

GW150914: The Advanced LIGO Detectors in the Era of First Discoveries

B. P. Abbott, +958 more
TL;DR: Following a major upgrade, the two advanced detectors of the Laser Interferometer Gravitational-wave Observatory (LIGO) held their first observation run between September 2015 and January 2016, and observed a transient gravitational-wave signal determined to be the coalescence of two black holes.