scispace - formally typeset
Search or ask a question
Author

L. Denneau

Other affiliations: Queen's University Belfast
Bio: L. Denneau is an academic researcher from University of Hawaii at Manoa. The author has contributed to research in topics: LIGO & Comet. The author has an hindex of 28, co-authored 82 publications receiving 4506 citations. Previous affiliations of L. Denneau include Queen's University Belfast.
Topics: LIGO, Comet, Supernova, Gravitational wave, Population


Papers
More filters
Posted Content
K. C. Chambers, E. A. Magnier, Nigel Metcalfe, H. Flewelling, M. E. Huber, Christopher Waters, L. Denneau, Peter W. Draper, Daniel J. Farrow, D. P. Finkbeiner, C. Holmberg, J. Koppenhoefer, P. A. Price, A. Rest, Roberto P. Saglia, Edward F. Schlafly, Stephen J. Smartt, W. E. Sweeney, R. J. Wainscoat, W. S. Burgett, S. Chastel, T. Grav, J. N. Heasley, Klaus W. Hodapp, Robert Jedicke, Nick Kaiser, R. P. Kudritzki, G. A. Luppino, Robert H. Lupton, David G. Monet, John Morgan, Peter M. Onaka, Bernie Shiao, Christopher W. Stubbs, John L. Tonry, R. L. White, Eduardo Bañados, Eric F. Bell, Ralf Bender, Edouard J. Bernard, M. Boegner, F. Boffi, M. T. Botticella, Annalisa Calamida, Stefano Casertano, W.-P. Chen, X. Chen, Shaun Cole, Niall R. Deacon, C. Frenk, Alan Fitzsimmons, Suvi Gezari, V. Gibbs, C. Goessl, T. Goggia, R. Gourgue, Bertrand Goldman, Phillip Grant, Eva K. Grebel, Nigel Hambly, G. Hasinger, Alan Heavens, Timothy M. Heckman, Robert Henderson, Th. Henning, M. J. Holman, Ulrich Hopp, Wing-Huen Ip, S. Isani, M. Jackson, C. D. Keyes, Anton M. Koekemoer, Rubina Kotak, D. Le, D. Liska, K. S. Long, John R. Lucey, M. Liu, Nicolas F. Martin, G. Masci, Brian McLean, E. Mindel, P. Misra, E. Morganson, David Murphy, A. Obaika, Gautham Narayan, M. Nieto-Santisteban, Peder Norberg, John A. Peacock, E. A. Pier, Marc Postman, N. Primak, C. Rae, A. Rai, Adam G. Riess, A. Riffeser, H. W. Rix, Siegfried Röser, R. Russel, L. Rutz, Elena Schilbach, A. S. B. Schultz, Daniel Scolnic, Louis Gregory Strolger, Alexander S. Szalay, Stella Seitz, E. Small, K. W. Smith, D. R. Soderblom, P. Taylor, Robert R. Thomson, Andy Taylor, A. R. Thakar, J. Thiel, D. A. Thilker, D. Unger, Yuji Urata, Jeff A. Valenti, J. Wagner, T. Walder, Fabian Walter, S. Watters, S. Werner, W. M. Wood-Vasey, R. F. G. Wyse 
TL;DR: Pan-STARRS1 has carried out a set of distinct synoptic imaging sky surveys including the 3ππ$ Steradian Survey and the Medium Deep Survey in 5 bands as mentioned in this paper.
Abstract: Pan-STARRS1 has carried out a set of distinct synoptic imaging sky surveys including the $3\pi$ Steradian Survey and the Medium Deep Survey in 5 bands ($grizy_{P1}$). The mean 5$\sigma$ point source limiting sensitivities in the stacked 3$\pi$ Steradian Survey in $grizy_{P1}$ are (23.3, 23.2, 23.1, 22.3, 21.4) respectively. The upper bound on the systematic uncertainty in the photometric calibration across the sky is 7-12 millimag depending on the bandpass. The systematic uncertainty of the astrometric calibration using the Gaia frame comes from a comparison of the results with Gaia: the standard deviation of the mean and median residuals ($ \Delta ra, \Delta dec $) are (2.3, 1.7) milliarcsec, and (3.1, 4.8) milliarcsec respectively. The Pan-STARRS system and the design of the PS1 surveys are described and an overview of the resulting image and catalog data products and their basic characteristics are described together with a summary of important results. The images, reduced data products, and derived data products from the Pan-STARRS1 surveys are available to the community from the Mikulski Archive for Space Telescopes (MAST) at STScI.

1,257 citations

Journal ArticleDOI
TL;DR: In this article, the authors present griz P1 light curves of 146 spectroscopically confirmed Type Ia supernovae (SNe Ia; 0.03 < z < 0.65) discovered during the first 1.5 yr of the Pan-STARRS1 Medium Deep Survey.
Abstract: We present griz P1 light curves of 146 spectroscopically confirmed Type Ia supernovae (SNe Ia; 0.03 < z < 0.65) discovered during the first 1.5 yr of the Pan-STARRS1 Medium Deep Survey. The Pan-STARRS1 natural photometric system is determined by a combination of on-site measurements of the instrument response function and observations of spectrophotometric standard stars. We find that the systematic uncertainties in the photometric system are currently 1.2% without accounting for the uncertainty in the Hubble Space Telescope Calspec definition of the AB system. A Hubble diagram is constructed with a subset of 113 out of 146 SNe Ia that pass our light curve quality cuts. The cosmological fit to 310 SNe Ia (113 PS1 SNe Ia + 222 light curves from 197 low-z SNe Ia), using only supernovae (SNe) and assuming a constant dark energy equation of state and flatness, yields $w=-1.120^{+0.360}_{-0.206}\hbox{(Stat)} ^{+0.269}_{-0.291}\hbox{(Sys)}$. When combined with BAO+CMB(Planck)+H 0, the analysis yields $\Omega _{\rm M}=0.280^{+0.013}_{-0.012}$ and $w=-1.166^{+0.072}_{-0.069}$ including all identified systematics. The value of w is inconsistent with the cosmological constant value of –1 at the 2.3σ level. Tension endures after removing either the baryon acoustic oscillation (BAO) or the H 0 constraint, though it is strongest when including the H 0 constraint. If we include WMAP9 cosmic microwave background (CMB) constraints instead of those from Planck, we find $w=-1.124^{+0.083}_{-0.065}$, which diminishes the discord to <2σ. We cannot conclude whether the tension with flat ΛCDM is a feature of dark energy, new physics, or a combination of chance and systematic errors. The full Pan-STARRS1 SN sample with ~three times as many SNe should provide more conclusive results.

387 citations

Journal ArticleDOI
TL;DR: The database is described in detail, including the construction of the database, the provenance of the data, the schema, and how the database tables are related.
Abstract: This paper describes the organization of the database and the catalog data products from the Pan-STARRS1 $3\pi$ Steradian Survey. The catalog data products are available in the form of an SQL-based relational database from MAST, the Mikulski Archive for Space Telescopes at STScI. The database is described in detail, including the construction of the database, the provenance of the data, the schema, and how the database tables are related. Examples of queries for a range of science goals are included. The catalog data products are available in the form of an SQL-based relational database from MAST, the Mikulski Archive for Space Telescopes at STScI.

315 citations

Journal ArticleDOI
TL;DR: In this article, the authors present griz light curves of 146 spectroscopically confirmed Type Ia supernovae discovered during the first 1.5 years of the Pan-STARRS1 Medium Deep Survey.
Abstract: We present griz light curves of 146 spectroscopically confirmed Type Ia Supernovae ($0.03 < z <0.65$) discovered during the first 1.5 years of the Pan-STARRS1 Medium Deep Survey. The Pan-STARRS1 natural photometric system is determined by a combination of on-site measurements of the instrument response function and observations of spectrophotometric standard stars. We find that the systematic uncertainties in the photometric system are currently 1.2\% without accounting for the uncertainty in the HST Calspec definition of the AB system. A Hubble diagram is constructed with a subset of 113 out of 146 SNe Ia that pass our light curve quality cuts. The cosmological fit to 310 SNe Ia (113 PS1 SNe Ia + 222 light curves from 197 low-z SNe Ia), using only SNe and assuming a constant dark energy equation of state and flatness, yields $w=-1.120^{+0.360}_{-0.206}\textrm{(Stat)} ^{+0.269}_{-0.291}\textrm{(Sys)}$. When combined with BAO+CMB(Planck)+$H_0$, the analysis yields $\Omega_{\rm M}=0.280^{+0.013}_{-0.012}$ and $w=-1.166^{+0.072}_{-0.069}$ including all identified systematics (see also Scolnic et al. 2014). The value of $w$ is inconsistent with the cosmological constant value of $-1$ at the 2.3$\sigma$ level. Tension endures after removing either the BAO or the $H_0$ constraint, though it is strongest when including the $H_0$ constraint. If we include WMAP9 CMB constraints instead of those from Planck, we find $w=-1.124^{+0.083}_{-0.065}$, which diminishes the discord to $<2\sigma$. We cannot conclude whether the tension with flat $\Lambda$CDM is a feature of dark energy, new physics, or a combination of chance and systematic errors. The full Pan-STARRS1 supernova sample with $\sim\!\!$3 times as many SNe should provide more conclusive results.

313 citations


Cited by
More filters
Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, Monique Arnaud3, M. Ashdown4  +334 moreInstitutions (82)
TL;DR: In this article, the authors present a cosmological analysis based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation.
Abstract: This paper presents cosmological results based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation. Our results are in very good agreement with the 2013 analysis of the Planck nominal-mission temperature data, but with increased precision. The temperature and polarization power spectra are consistent with the standard spatially-flat 6-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations (denoted “base ΛCDM” in this paper). From the Planck temperature data combined with Planck lensing, for this cosmology we find a Hubble constant, H0 = (67.8 ± 0.9) km s-1Mpc-1, a matter density parameter Ωm = 0.308 ± 0.012, and a tilted scalar spectral index with ns = 0.968 ± 0.006, consistent with the 2013 analysis. Note that in this abstract we quote 68% confidence limits on measured parameters and 95% upper limits on other parameters. We present the first results of polarization measurements with the Low Frequency Instrument at large angular scales. Combined with the Planck temperature and lensing data, these measurements give a reionization optical depth of τ = 0.066 ± 0.016, corresponding to a reionization redshift of . These results are consistent with those from WMAP polarization measurements cleaned for dust emission using 353-GHz polarization maps from the High Frequency Instrument. We find no evidence for any departure from base ΛCDM in the neutrino sector of the theory; for example, combining Planck observations with other astrophysical data we find Neff = 3.15 ± 0.23 for the effective number of relativistic degrees of freedom, consistent with the value Neff = 3.046 of the Standard Model of particle physics. The sum of neutrino masses is constrained to ∑ mν < 0.23 eV. The spatial curvature of our Universe is found to be very close to zero, with | ΩK | < 0.005. Adding a tensor component as a single-parameter extension to base ΛCDM we find an upper limit on the tensor-to-scalar ratio of r0.002< 0.11, consistent with the Planck 2013 results and consistent with the B-mode polarization constraints from a joint analysis of BICEP2, Keck Array, and Planck (BKP) data. Adding the BKP B-mode data to our analysis leads to a tighter constraint of r0.002 < 0.09 and disfavours inflationarymodels with a V(φ) ∝ φ2 potential. The addition of Planck polarization data leads to strong constraints on deviations from a purely adiabatic spectrum of fluctuations. We find no evidence for any contribution from isocurvature perturbations or from cosmic defects. Combining Planck data with other astrophysical data, including Type Ia supernovae, the equation of state of dark energy is constrained to w = −1.006 ± 0.045, consistent with the expected value for a cosmological constant. The standard big bang nucleosynthesis predictions for the helium and deuterium abundances for the best-fit Planck base ΛCDM cosmology are in excellent agreement with observations. We also constraints on annihilating dark matter and on possible deviations from the standard recombination history. In neither case do we find no evidence for new physics. The Planck results for base ΛCDM are in good agreement with baryon acoustic oscillation data and with the JLA sample of Type Ia supernovae. However, as in the 2013 analysis, the amplitude of the fluctuation spectrum is found to be higher than inferred from some analyses of rich cluster counts and weak gravitational lensing. We show that these tensions cannot easily be resolved with simple modifications of the base ΛCDM cosmology. Apart from these tensions, the base ΛCDM cosmology provides an excellent description of the Planck CMB observations and many other astrophysical data sets.

10,728 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present results based on full-mission Planck observations of temperature and polarization anisotropies of the CMB, which are consistent with the six-parameter inflationary LCDM cosmology.
Abstract: We present results based on full-mission Planck observations of temperature and polarization anisotropies of the CMB. These data are consistent with the six-parameter inflationary LCDM cosmology. From the Planck temperature and lensing data, for this cosmology we find a Hubble constant, H0= (67.8 +/- 0.9) km/s/Mpc, a matter density parameter Omega_m = 0.308 +/- 0.012 and a scalar spectral index with n_s = 0.968 +/- 0.006. (We quote 68% errors on measured parameters and 95% limits on other parameters.) Combined with Planck temperature and lensing data, Planck LFI polarization measurements lead to a reionization optical depth of tau = 0.066 +/- 0.016. Combining Planck with other astrophysical data we find N_ eff = 3.15 +/- 0.23 for the effective number of relativistic degrees of freedom and the sum of neutrino masses is constrained to < 0.23 eV. Spatial curvature is found to be |Omega_K| < 0.005. For LCDM we find a limit on the tensor-to-scalar ratio of r <0.11 consistent with the B-mode constraints from an analysis of BICEP2, Keck Array, and Planck (BKP) data. Adding the BKP data leads to a tighter constraint of r < 0.09. We find no evidence for isocurvature perturbations or cosmic defects. The equation of state of dark energy is constrained to w = -1.006 +/- 0.045. Standard big bang nucleosynthesis predictions for the Planck LCDM cosmology are in excellent agreement with observations. We investigate annihilating dark matter and deviations from standard recombination, finding no evidence for new physics. The Planck results for base LCDM are in agreement with BAO data and with the JLA SNe sample. However the amplitude of the fluctuations is found to be higher than inferred from rich cluster counts and weak gravitational lensing. Apart from these tensions, the base LCDM cosmology provides an excellent description of the Planck CMB observations and many other astrophysical data sets.

9,745 citations

Journal ArticleDOI
TL;DR: The second Gaia data release, Gaia DR2 as mentioned in this paper, is a major advance with respect to Gaia DR1 in terms of completeness, performance, and richness of the data products.
Abstract: Context. We present the second Gaia data release, Gaia DR2, consisting of astrometry, photometry, radial velocities, and information on astrophysical parameters and variability, for sources brighter than magnitude 21. In addition epoch astrometry and photometry are provided for a modest sample of minor planets in the solar system. Aims: A summary of the contents of Gaia DR2 is presented, accompanied by a discussion on the differences with respect to Gaia DR1 and an overview of the main limitations which are still present in the survey. Recommendations are made on the responsible use of Gaia DR2 results. Methods: The raw data collected with the Gaia instruments during the first 22 months of the mission have been processed by the Gaia Data Processing and Analysis Consortium (DPAC) and turned into this second data release, which represents a major advance with respect to Gaia DR1 in terms of completeness, performance, and richness of the data products. Results: Gaia DR2 contains celestial positions and the apparent brightness in G for approximately 1.7 billion sources. For 1.3 billion of those sources, parallaxes and proper motions are in addition available. The sample of sources for which variability information is provided is expanded to 0.5 million stars. This data release contains four new elements: broad-band colour information in the form of the apparent brightness in the GBP (330-680 nm) and GRP (630-1050 nm) bands is available for 1.4 billion sources; median radial velocities for some 7 million sources are presented; for between 77 and 161 million sources estimates are provided of the stellar effective temperature, extinction, reddening, and radius and luminosity; and for a pre-selected list of 14 000 minor planets in the solar system epoch astrometry and photometry are presented. Finally, Gaia DR2 also represents a new materialisation of the celestial reference frame in the optical, the Gaia-CRF2, which is the first optical reference frame based solely on extragalactic sources. There are notable changes in the photometric system and the catalogue source list with respect to Gaia DR1, and we stress the need to consider the two data releases as independent. Conclusions: Gaia DR2 represents a major achievement for the Gaia mission, delivering on the long standing promise to provide parallaxes and proper motions for over 1 billion stars, and representing a first step in the availability of complementary radial velocity and source astrophysical information for a sample of stars in the Gaia survey which covers a very substantial fraction of the volume of our galaxy.

8,308 citations

Journal Article
TL;DR: The first direct detection of gravitational waves and the first observation of a binary black hole merger were reported in this paper, with a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ.
Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160) Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

4,375 citations

Journal ArticleDOI
TL;DR: In this article, a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors.
Abstract: On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of $\sim$1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg$^2$ at a luminosity distance of $40^{+8}_{-8}$ Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Msun. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at $\sim$40 Mpc) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over $\sim$10 days. Following early non-detections, X-ray and radio emission were discovered at the transient's position $\sim$9 and $\sim$16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. (Abridged)

3,180 citations