scispace - formally typeset
L

L. Di Fiore

Researcher at University of Naples Federico II

Publications -  418
Citations -  67748

L. Di Fiore is an academic researcher from University of Naples Federico II. The author has contributed to research in topics: Gravitational wave & LIGO. The author has an hindex of 93, co-authored 401 publications receiving 54468 citations. Previous affiliations of L. Di Fiore include University of Salerno & Istituto Nazionale di Fisica Nucleare.

Papers
More filters
Journal ArticleDOI

GW170817: observation of gravitational waves from a binary neutron star inspiral

B. P. Abbott, +1134 more
TL;DR: The association of GRB 170817A, detected by Fermi-GBM 1.7 s after the coalescence, corroborates the hypothesis of a neutron star merger and provides the first direct evidence of a link between these mergers and short γ-ray bursts.
Journal ArticleDOI

GW151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence

B. P. Abbott, +973 more
TL;DR: This second gravitational-wave observation provides improved constraints on stellar populations and on deviations from general relativity.
Journal ArticleDOI

Advanced Virgo: a second-generation interferometric gravitational wave detector

Fausto Acernese, +233 more
TL;DR: Advanced Virgo as mentioned in this paper is the project to upgrade the Virgo interferometric detector of gravitational waves, with the aim of increasing the number of observable galaxies (and thus the detection rate) by three orders of magnitude.
Journal ArticleDOI

Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A

B. P. Abbott, +1198 more
TL;DR: In this paper, the authors used the observed time delay of $(+1.74\pm 0.05)\,{\rm{s}}$ between GRB 170817A and GW170817 to constrain the difference between the speed of gravity and speed of light to be between $-3
Journal ArticleDOI

GW170814: A three-detector observation of gravitational waves from a binary black hole coalescence

B. P. Abbott, +1116 more
TL;DR: For the first time, the nature of gravitational-wave polarizations from the antenna response of the LIGO-Virgo network is tested, thus enabling a new class of phenomenological tests of gravity.