scispace - formally typeset
Search or ask a question
Author

L Duvet

Bio: L Duvet is an academic researcher from European Space Agency. The author has contributed to research in topics: Weak gravitational lensing. The author has an hindex of 1, co-authored 1 publications receiving 26 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the effects of radiation-induced charge transfer inefficiency (CTI) in the Euclid CCDs over the course of the 5-year mission at L2 are understood.
Abstract: Euclid is a medium class European Space Agency mission candidate for launch in 2019 with a primary goal to study the dark universe using the weak lensing and baryonic acoustic oscillations techniques. Weak lensing depends on accurate shape measurements of distant galaxies. Therefore it is beneficial that the effects of radiation-induced charge transfer inefficiency (CTI) in the Euclid CCDs over the course of the 5 year mission at L2 are understood. This will allow, through experimental analysis and modelling techniques, the effects of radiation induced CTI on shape to be decoupled from those of mass inhomogeneities along the line-of-sight. This paper discusses a selection of work from the study that has been undertaken using the e2v CCD204 as part of the initial proton radiation damage assessment for Euclid. The experimental arrangement and procedure are described followed by the results obtained, thereby allowing recommendations to be made on the CCD operating temperature, to provide an insight into CTI effects using an optical background, to assess the benefits of using charge injection on CTI recovery and the effect of the use of two different methods of serial clocking on serial CTI. This work will form the basis of a comparison with a p-channel CCD204 fabricated using the same mask set as the n-channel equivalent. A custom CCD has been designed, based on this work and discussions between e2v technologies plc. and the Euclid consortium, and designated the CCD273.

28 citations


Cited by
More filters
Journal ArticleDOI
Abstract: The Wide Field InfraRed Survey Telescope-Astrophysics Focused Telescope Asset (WFIRST-AFTA) mission is a 2.4-m class space telescope that will be used across a swath of astrophysical research domains. JPL will provide a high-contrast imaging coronagraph instrument - one of two major astronomical instruments. In order to achieve the low noise performance required to detect planets under extremely low flux conditions, the electron multiplying charge-coupled device (EMCCD) has been baselined for both of the coronagraph's sensors - the imaging camera and integral field spectrograph. JPL has established an EMCCD test laboratory in order to advance EMCCD maturity to technology readiness level-6. This plan incorporates full sensor characterization, including read noise, dark current, and clock-induced charge. In addition, by considering the unique challenges of the WFIRST space environment, degradation to the sensor's charge transfer efficiency will be assessed, as a result of damage from high-energy particles such as protons, electrons, and cosmic rays. Science-grade CCD201-20 EMCCDs have been irradiated to a proton fluence that reflects the projected WFIRST orbit. Performance degradation due to radiation displacement damage is reported, which is the first such study for a CCD201-20 that replicates the WFIRST conditions. In addition, techniques intended to identify and mitigate radiation-induced electron trapping, such as trap pumping, custom clocking, and thermal cycling, are discussed.

77 citations

Journal ArticleDOI
TL;DR: In this article, the A-center trap was investigated in serial readout and the authors showed that the trap capture probability can be characterized in situ under standard operating conditions such that dramatic improvements can be made to optimization processes and modeling techniques.
Abstract: The science goals of space missions from the Hubble Space Telescope through to Gaia and Euclid require ultraprecise positional, photometric, and shape measurement information. However, in the radiation environment of the space telescopes, damage to the focal plane detectors through high-energy protons leads to the creation of traps, a loss of charge transfer efficiency, and a consequent deterioration in measurement accuracy. An understanding of the traps produced and their properties in the CCD during operation is essential to allow optimization of the devices and suitable modeling to correct the effect of the damage through the postprocessing of images. The technique of “pumping single traps” has allowed the study of individual traps in high detail that cannot be achieved with other techniques, such as deep level transient spectroscopy, whilst also locating each trap to the subpixel level in the device. Outlining the principles used, we have demonstrated the technique for the A-center, the most influential trap in serial readout, giving results consistent with the more general theoretical values, but here showing new results indicating the spread in the emission times achieved and the variation in capture probability of individual traps with increasing signal levels. This technique can now be applied to other time and temperature regimes in the CCD to characterize individual traps in situ under standard operating conditions such that dramatic improvements can be made to optimization processes and modeling techniques.

59 citations

Proceedings ArticleDOI
TL;DR: Trap-pumping techniques used to optimise the charge transfer efficiency of p- and n-channel e2v CCD204s are presented and the use of trap-pumped images for on-orbit calibration and ground based image correction algorithms are described.
Abstract: The charge transfer efficiency of a CCD is based on the average level of signal lost per pixel over a number of transfers. This value can be used to directly compare the relative performances of different structures, increases in radiation damage or to quantify improvements in operating parameters. This number does not however give sufficient detail to mitigate for the actual signal loss/deference in either of the transfer directions that may be critical to measuring shapes to high accuracy, such as those required in astronomy applications (e.g. for Gaia’s astrometry or the galaxy distortion measurements for Euclid) based in the radiation environment of space. Pocket-pumping is an established technique for finding the location and activation levels of traps; however, a number of parameters in the process can also be explored to identify the trap species and location to sub-pixel accuracy. This information can be used in two ways to increase the sensitivity of a camera. Firstly, the clocking process can be optimised for the time constant of the majority of traps in each of the transfer directions, reducing deferred charge during read out. Secondly, a correction algorithm can be developed and employed during the post-processing of individual frames to move most of any deferred signal back into the charge packet it originated from. Here we present the trap-pumping techniques used to optimise the charge transfer efficiency of p- and n-channel e2v CCD204s and describe the use of trap-pumped images for on-orbit calibration and ground based image correction algorithms.

47 citations

Proceedings ArticleDOI
TL;DR: In this paper, a wide-field optical system has been used in space for X-ray monitoring for astrophysical applications and the proposed approach is based on the use of 1D "Lobster eye" optics in combination with Timepix Xray detector in the energy range 3 - 40 keV.
Abstract: The primary objective of the project VZLUSAT-1 is the development, manufacturing, qualification and experimental verification of products and technologies in Earth orbit (IOD – In-Orbit Demonstration). This work addresses the issue of X-ray monitoring for astrophysical applications. The proposed wide-field optical system has not been used in space yet. The proposed novel approach is based on the use of 1D "Lobster eye" optics in combination with Timepix X-ray detector in the energy range 3 - 40 keV. The proposed project includes theoretical study and a functional sample of the Timepix X-ray detector with multifoil wide-field X-ray "Lobster eye" optics. Using optics to focus X-rays on a detector is the only solution in cases the intensity of impinging X-ray radiation is below the sensitivity of the detector, e.g. while monitoring astrophysical objects in space, or phenomena in the Earth's atmosphere. On board the functions and features of Radiation Hardened Composite Housing (RHCH), Solar panels based on composite substrate and Hollow Retro Reflector Array based on composite (HRRA) will be verified. To verify the properties of the developed products the satellite is equipped by Health Monitoring system (HM). HM system includes temperature, volatiles, radiation and mechanical properties sensors. The custom ADCS algorithms are being developed within the project. Given the number of IOD experiments and the necessary power the 1U CubeSat is equipped with Composite Deployable Panels (CDP) where HM panels and additional Solar panels are located. Satellite platform is assembled from commercial parts. Mission VZLUSAT-1 is planned for 6 months with launch in 2016.

18 citations