scispace - formally typeset
Search or ask a question
Author

L. Garcia

Bio: L. Garcia is an academic researcher from Ghent University. The author has contributed to research in topics: Squalene & Vegetable oil. The author has an hindex of 1, co-authored 1 publications receiving 126 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A gas chromatographic method for the analysis of deodorizer distillate without saponification of the sample is described and good recoveries for delta-tocopherol, alpha-tocaperol, stigmasterol and cholesteryl palmitate of 97, 94, 95, 95 and 92%, respectively were obtained.

135 citations


Cited by
More filters
Book
18 Oct 2002
TL;DR: In this article, Gunstone et al. present a survey of the production and trade of vegetable oils and their application in the food industry, including the extraction of olive oil from olives.
Abstract: Preface to the First Edition. Preface to the Second Edition. Contributors. List of Abbreviations. 1 Production and Trade of Vegetable Oils ( Frank D. Gunstone ). 1.1 Extraction, refining and processing. 1.2 Vegetable oils: Production, consumption and trade. 1.3 Some topical issues. 2 Palm Oil ( Siew Wai Lin ). 2.1 Introduction. 2.2 Composition and properties of palm oil and fractions. 2.3 Physical characteristics of palm oil products. 2.4 Minor components of palm oil products. 2.5 Food applications of palm oil products. 2.5.1 Cooking/frying oil. 2.6 Nutritional aspects of palm oil. 2.7 Sustainable palm oil. 2.8 Conclusions. 3 Soybean Oil ( Tong Wang ). 3.1 Introduction. 3.2 Composition of soybean and soybean oil. 3.3 Recovery and refining of soybean oil. 3.4 Oil composition modification by processing and biotechnology. 3.5 Physical properties of soybean oil. 3.6 Oxidation evaluation of soybean oil. 3.7 Nutritional properties of soybean oil. 3.8 Food uses of soybean oil. 4 Canola/Rapeseed Oil ( Roman Przybylski ). 4.1 Introduction. 4.2 Composition. 4.3 Physical and chemical properties. 4.4 Major food uses. 4.5 Conclusion and outlook. 5 Sunflower Oil ( Maria A. Grompone ). 5.1 Introduction. 5.2 Sunflower oil from different types of seed. 5.3 Physical and chemical properties. 5.4 Melting properties and thermal behaviour. 5.5 Extraction and processing of sunflower oil. 5.6 Modified properties of sunflower oil. 5.7 Oxidative stability of commercial sunflower oils. 5.8 Food uses of different sunflower oil types. 5.9 Frying use of commercial sunflower oil types. 6 The Lauric (Coconut and Palm Kernel) Oils ( Ibrahim Nuzul Amri ). 6.1 Introduction. 6.2 Coconut oil. 6.3 Palm kernel oil. 6.4 Processing. 6.5 Food uses. 6.6 Health aspects. 7 Cottonseed Oil ( Michael K. Dowd ). 7.1 Introduction. 7.2 History. 7.3 Seed composition. 7.4 Oil composition. 7.5 Chemical and physical properties of cottonseed oil. 7.6 Processing. 7.7 Cottonseed oil uses. 7.8 Co-product uses. 8 Groundnut (Peanut) Oil ( Lisa L. Dean, Jack P. Davis, and Timothy H. Sanders ). 8.1 Peanut production, history, and oil extraction. 8.2 Oil uses. 8.3 Composition of groundnut oil. 8.4 Chemical and physical characteristics of groundnut oil. 8.5 Health issues. 9 Olive Oil ( Dimitrios Boskou ). 9.1 Introduction. 9.2 Extraction of olive oil from olives. 9.3 Olive oil composition. 9.4 Effect of processing olives on the composition of virgin olive oils. 9.5 Refining and modification. 9.6 Hardening and interesterification. 9.7 Quality, genuineness and regulations. 9.8 Consumption and culinary applications. 10 Corn Oil ( Robert A. Moreau ). 10.1 Composition of corn oil. 10.2 Properties of corn oil. 10.3 Major food uses of corn oil. 10.4 Conclusions. 11 Minor and Speciality Oils ( S. Prakash Kochhar ). 11.1 Introduction. 11.2 Sesame seed oil. 11.3 Rice bran oil. 11.4 Flaxseed (linseed and linola) oil. 11.5 Safflower oil. 11.6 Argan kernel oil. 11.7 Avocado oil. 11.8 Camelina seed oil. 11.9 Grape seed oil. 11.10 Pumpkin seed oil. 11.11 Sea buckthorn oil. 11.12 Cocoa butter and CBE. 11.13 Oils containing a-linolenic acid (GLA) and stearidonic acid (SDA). 11.14 Tree nut oils. Useful Websites. Index.

617 citations

Journal ArticleDOI
TL;DR: In this paper, the first liquid chromatographic method for the identification and quantification of seven phytosterols in olive oil was presented, using mass spectrometry detection in positive APCI (atmospheric pressure chemical ionisation) mode.

167 citations

Journal ArticleDOI
TL;DR: The influence of refining process on the distribution of free and esterified phytosterols in corn, palm, and soybean oil was studied in this paper, where a significant reduction in the content of total sterols during neutralization was observed, which was attributed to a reduction in free sterol fraction.
Abstract: The influence of the refining process on the distribution of free and esterified phytosterols in corn, palm, and soybean oil was studied. Water degumming did not affect the phytosterol content or its composition. A slight increase in the content of free sterols was observed during acid degumming and bleaching due to acid-catalyzed hydrolysis of steryl esters. A significant reduction in the content of total sterols during neutralization was observed, which was attributed to a reduction in the free sterol fraction. Free sterols probably form micelles with soaps and are transferred into the soapstock. The steryl ester content remained constant during all neutralization experiments, indicating that hydrolysis of steryl esters did not take place during neutralization. During deodorization, free sterols are distilled from the oil, resulting in a gradual reduction in the total sterol content as a function of the deodorization temperature (220–260°C). A considerable increase in the steryl ester fraction was found during physical refining, probably owing to a heat-promoted esterification reaction between free sterols and FA.

144 citations

Journal ArticleDOI
TL;DR: The natural sources for squalene are reviewed, the main methods and techniques to obtain and to determine it are focused on and its applications in different fields of human activity are mentioned.
Abstract: Squalene is a natural dehydrotriterpenic hydrocarbon (C30H50) with six double bonds, known as an intermediate in the biosynthesis of phytosterol or cholesterol in plants or animals. We have briefly reviewed the natural sources for squalene and focused on the main methods and techniques to obtain and to determine it. Some of its applications in different fields of human activity are also mentioned.

143 citations

Journal ArticleDOI
TL;DR: The literature in this area is discontinuous and warrants the effort to produce a comprehensive review as mentioned in this paper, and the aim of this review is to combine and condense the body of research performed on these materials, as well as to suggest the best routes for characterization and extraction.

133 citations