scispace - formally typeset
Search or ask a question
Author

L. Harish

Bio: L. Harish is an academic researcher from Indian Institute of Technology Madras. The author has an hindex of 1, co-authored 1 publications receiving 1 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the results of cyclic electromechanical experiments conducted on uniaxially stretched poly(vinylidene fluoride) (PVDF) films were carried out over a range of applied displacement amplitude, superposed on an initial stretch on the test samples.
Abstract: In this study, we present the results of cyclic electromechanical experiments conducted on uniaxially stretched poly(vinylidene fluoride) (PVDF) films. The experiments were carried out over a range of applied displacement amplitude ranging from 0.5 mm to 1.5 mm, superposed on an initial stretch on the test samples. The strains were calculated using non-contact speckle monitoring method. The hysteresis plots of mechanical and electromechanical cyclic responses are presented. Stress relaxation was observed up to 70% in orthogonal to stretch direction and 16% in the stretch direction. Observed piezoelectricity along both the directions is reported and discussed in the paper.

1 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors used two approaches to model cyclic stress with the number of cycles and the effect of cyclic loading on the material, in terms of entropy generation for mechanical and electrical response, is considered for modelling and this approach is adopted to model the PVDF response when subjected to cyclic load.
Abstract: Polyvinylidene fluoride (PVDF) is a piezopolymer, and it has numerous applications as sensors and actuators. Uniaxially stretched PVDF subjected to cyclic stresses finds usage in different applications. Characterising the cyclic response of PVDF through appropriate models is important. In this study, we used two approaches to model cyclic stress with the number of cycles. In the first approach, the evolution equations are used and adopted to model the variation of the cyclic mechanical response of PVDF to track the cyclic response at each time step. In the second approach, the effect of cyclic loading on the material, in terms of entropy generation for mechanical and electrical response, is considered for modelling and this approach is adopted to model the PVDF response when subjected to cyclic loading. The mean stress and voltage variation with the number of cycles are predicted.