scispace - formally typeset
Search or ask a question
Author

L. Helmbrecht

Bio: L. Helmbrecht is an academic researcher. The author has contributed to research in topics: Perovskite (structure). The author has co-authored 1 publications.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, an ion exchange synthesis of 2D perovskites is presented, starting from a lead carbonate host material and converting it to 2D polygonal structures via a solution-based treatment.
Abstract: In recent years, two dimensional (2D) perovskites have attracted growing interest as a material for optoelectronic applications, combining the defect tolerance and strong absorption of bulk perovskites with enhanced material stability. Moreover, the possibility to tune their bandgap via control of the thickness of the perovskite layers allows precise optimization of the energy levels in these materials, making them ideal candidates for rationally designed semiconductor heterojunctions. However, despite the advances in the synthesis of 2D perovskites, typical fabrication strategies produce either uniform thin-films or isolated single crystals, severely hindering the prospect of patterning these materials. We demonstrate an ion-exchange synthesis of 2D perovskites, starting from a lead carbonate host material and converting it to 2D perovskites via a solution-based treatment. The process allows for the fabrication of 2D perovskites spanning a range of halide compositions and 2D layer thicknesses and yields highly crystalline luminescent materials. We demonstrate the potential of this approach for 2D perovskite patterning, spatially localizing 2D perovskite structures via the conversion of pre-patterned lead carbonate structures. These results significantly expand the possibilities of 2D perovskite material design toward controllable integration of 2D perovskites in complex device architectures.

2 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article , shape-preserving conversion of self-assembled CaCO3 microtubes to PbCO3 and MAPbBr3 perovskite was reported, where the first step induces the growth of cerussite needles on the outer surface.

4 citations

Journal ArticleDOI
TL;DR: In this paper , the effects of the Pb oxidation state of the initial inorganic precursor on the growth of pure-phase Popper 2D perovskite BA2PbI4 in single-step synthesis were investigated.
Abstract: Two-dimensional (2D) lead halide perovskites are an exciting class of materials currently being extensively explored for photovoltaics and other optoelectronic applications. Their ionic nature makes them ideal candidates for solution processing into both thin films and nanostructured crystals. Understanding how 2D lead halide perovskite crystals form is key towards full control over their physical properties, which may enable new physical phenomena and devices. Here, we investigate the effects of the Pb oxidation state of the initial inorganic precursor on the growth of pure-phase (n = 1) – Popper 2D perovskite BA2PbI4 in single-step synthesis. We examine the different crystallisation routes in exposing PbO2 and PbI2 powders to a BAI : IPA organo-halide solution, by combining in situ optical microscopy, UV–VIS spectroscopy and time-resolved high performance liquid chromatography. So far, works using PbO2 to synthesise 3D LHPs introduce a preceding step to reduce PbO2 into either PbO or PbI2. In this work, we find that BA2PbI4 is directly formed when exposing PbO2 to BAI : IPA without the need for an external reducing agent. We explain this phenomenon by the spontaneous reduction/oxidation of PbO2/BAI that occurs under iodine-rich conditions. We observe differences in the final morphology (rectangles vs. octagons) and nanocrystal growth rate, which we explain through the different chemistry and iodoplumbate complexes involved in each case. As such, this work spans the horizon of usable lead precursors and offers a new turning knob to control crystal growth in single-step LHP synthesis.