scispace - formally typeset
Search or ask a question
Author

L. J. Crane

Bio: L. J. Crane is an academic researcher from Trinity College, Dublin. The author has contributed to research in topics: Boundary layer & Slip (materials science). The author has an hindex of 14, co-authored 47 publications receiving 3634 citations. Previous affiliations of L. J. Crane include Royal College of Surgeons in Ireland.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a plastischem material fliesst aus einem Spalt with einer Geschwindigkeit, die proportional zum Abstand vom Spalt ist.
Abstract: Eine Platte aus plastischem Material fliesst aus einem Spalt mit einer Geschwindigkeit, die proportional zum Abstand vom Spalt ist. Eine exakte Losung der Grenzschichtgleichungen fur die von der Platte erzeugte Luftbewegung wird gegeben. Oberflachenreibung und Warmeleitungskoeffizient werden berechnet.

3,317 citations

Journal ArticleDOI

115 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of high amplitude high frequency mechanical vibration on the break-up characteristics of a liquid jet in air is described, and the main phenomenon of imposed periodicity of drop spacing and uniformity of drop size are described, along with several other interesting phenomena.
Abstract: An account of experimental investigation into the effects of high amplitude high frequency mechanical vibration on the break-up characteristics of a liquid jet in air is given. The main phenomenon of imposed periodicity of drop spacing and uniformity of drop size is described, along with several other interesting phenomena. Graphical relationships between parameters such as vibration frequency, amplitude and break-up length are established. While the results largely confirm Rayleigh's original linear analysis with respect to the wavelength of maximum instability, considerable discrepancy is revealed in the magnitude of the amplification factor and considerable departure from linearity is indicated.

72 citations

Journal ArticleDOI
TL;DR: In this article, the authors deal with the flow generated by a stretching filament issuing from an orifice into a still fluid, where the filament is assumed to have a velocity proportional to the axial distance.
Abstract: This paper deals with the flow generated by a stretching filament issuing from an orifice into a still fluid. The filament is assumed to have a velocity proportional to the axial distance. The solution is valid at large axial distances when the boundary layer is very much thicker than the cylinder.

48 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors review the theoretical development of this field alongside recent experimental work, and outline unsolved problems, as well as a host of technological applications, ranging from printing to mixing and fiber spinning.
Abstract: Surface-tension-driven flows and, in particular, their tendency to decay spontaneously into drops have long fascinated naturalists, the earliest systematic experiments dating back to the beginning of the 19th century. Linear stability theory governs the onset of breakup and was developed by Rayleigh, Plateau, and Maxwell. However, only recently has attention turned to the nonlinear behavior in the vicinity of the singular point where a drop separates. The increased attention is due to a number of recent and increasingly refined experiments, as well as to a host of technological applications, ranging from printing to mixing and fiber spinning. The description of drop separation becomes possible because jet motion turns out to be effectively governed by one-dimensional equations, which still contain most of the richness of the original dynamics. In addition, an attraction for physicists lies in the fact that the separation singularity is governed by universal scaling laws, which constitute an asymptotic solution of the Navier-Stokes equation before and after breakup. The Navier-Stokes equation is thus continued uniquely through the singularity. At high viscosities, a series of noise-driven instabilities has been observed, which are a nested superposition of singularities of the same universal form. At low viscosities, there is rich scaling behavior in addition to aesthetically pleasing breakup patterns driven by capillary waves. The author reviews the theoretical development of this field alongside recent experimental work, and outlines unsolved problems.

1,670 citations

Journal ArticleDOI
TL;DR: A review of the fundamental and technological aspects of these subjects can be found in this article, where the focus is mainly on surface tension effects, which result from the cohesive properties of liquids Paradoxically, cohesive forces promote the breakup of jets, widely encountered in nature, technology and basic science.
Abstract: Jets, ie collimated streams of matter, occur from the microscale up to the large-scale structure of the universe Our focus will be mostly on surface tension effects, which result from the cohesive properties of liquids Paradoxically, cohesive forces promote the breakup of jets, widely encountered in nature, technology and basic science, for example in nuclear fission, DNA sampling, medical diagnostics, sprays, agricultural irrigation and jet engine technology Liquid jets thus serve as a paradigm for free-surface motion, hydrodynamic instability and singularity formation leading to drop breakup In addition to their practical usefulness, jets are an ideal probe for liquid properties, such as surface tension, viscosity or non-Newtonian rheology They also arise from the last but one topology change of liquid masses bursting into sprays Jet dynamics are sensitive to the turbulent or thermal excitation of the fluid, as well as to the surrounding gas or fluid medium The aim of this review is to provide a unified description of the fundamental and the technological aspects of these subjects

1,583 citations

Journal ArticleDOI
TL;DR: In this article, a similarity solution is presented which depends on the Prandtl number Pr, Lewis number Le, Brownian motion number Nb and thermophoresis number Nt.

1,565 citations

Journal ArticleDOI
TL;DR: In this article, the boundary layer flow induced in a nanofluid due to a linearly stretching sheet is studied numerically and the transport equations include the effects of Brownian motion and thermophoresis.

1,086 citations

01 Jan 2011
TL;DR: In this paper, the non-similar solutions are presented which depend on the Magnetic parameter M respectively, the obtained equations have been solved by explicit finite difference method and temperature and concentration profiles are discussed for the different values of the above parameters with different time steps.
Abstract: Unsteady heat and mass flow of a nanofluid past a stretching sheet with thermal radiation in the presence of magnetic field is studied. To obtain non-similar equation, continuity, momentum, energy and concentration equations have been non-dimensionalised by usual transformation. The non-similar solutions are presented here which depends on the Magnetic parameter M respectively . The obtained equations have been solved by explicit finite difference method. The temperature and concentration profiles are discussed for the different values of the above parameters with different time steps.

956 citations