scispace - formally typeset
Search or ask a question
Author

L.M. Hallcher

Bio: L.M. Hallcher is an academic researcher. The author has contributed to research in topics: Uncompetitive inhibitor & Non-competitive inhibition. The author has an hindex of 1, co-authored 1 publications receiving 1023 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The effects of cholinergic agonists and antagonists on the enzyme were examined and found none and the possibility that the inhibition of this enzyme by lithium ion is related to the pharmacological actions of lithium is discussed.

1,038 citations


Cited by
More filters
Journal ArticleDOI
01 Nov 1984-Nature
TL;DR: Diacylglycerol operates within the plane of the membrane to activate protein kinase C, whereas inositol trisphosphate is released into the cytoplasm to function as a second messenger for mobilizing intracellular calcium.
Abstract: There has recently been rapid progress in understanding receptors that generate intracellular signals from inositol lipids. One of these lipids, phosphatidylinositol 4,5-bisphosphate, is hydrolysed to diacylglycerol and inositol trisphosphate as part of a signal transduction mechanism for controlling a variety of cellular processes including secretion, metabolism, phototransduction and cell proliferation. Diacylglycerol operates within the plane of the membrane to activate protein kinase C, whereas inositol trisphosphate is released into the cytoplasm to function as a second messenger for mobilizing intracellular calcium.

5,712 citations

Journal ArticleDOI
21 Sep 1989-Nature
TL;DR: The subtlety of calcium regulation by inositol phosphates is emphasized by recent studies that have revealed oscillations in calcium concentration which are perhaps part of a frequency-encoded second-messenger system.
Abstract: Inositol 1,4,5-trisphosphate is a second messenger which regulates intracellular calcium both by mobilizing calcium from internal stores and, perhaps indirectly, by stimulating calcium entry. In these actions it may function with its phosphorylated metabolite, inositol 1,3,4,5-tetrakisphosphate. The subtlety of calcium regulation by inositol phosphates is emphasized by recent studies that have revealed oscillations in calcium concentration which are perhaps part of a frequency-encoded second-messenger system.

3,834 citations

Journal ArticleDOI
TL;DR: It is proposed that inhibition of histone deacetylase provides a mechanism for valproic acid-induced birth defects and could also explain the efficacy of valproIC acid in the treatment of bipolar disorder.

1,672 citations

Journal ArticleDOI
TL;DR: This review focuses on mammalian autophagy, and an overview of the understanding of its machinery and the signaling cascades that regulate it is given, and the possibility of autophagic upregulation as a therapeutic approach for various conditions is considered.
Abstract: (Macro)autophagy is a bulk degradation process that mediates the clearance of long-lived proteins and organelles. Autophagy is initiated by double-membraned structures, which engulf portions of cytoplasm. The resulting autophagosomes ultimately fuse with lysosomes, where their contents are degraded. Although the term autophagy was first used in 1963, the field has witnessed dramatic growth in the last 5 years, partly as a consequence of the discovery of key components of its cellular machinery. In this review we focus on mammalian autophagy, and we give an overview of the understanding of its machinery and the signaling cascades that regulate it. As recent studies have also shown that autophagy is critical in a range of normal human physiological processes, and defective autophagy is associated with diverse diseases, including neurodegeneration, lysosomal storage diseases, cancers, and Crohn's disease, we discuss the roles of autophagy in health and disease, while trying to critically evaluate if the coincidence between autophagy and these conditions is causal or an epiphenomenon. Finally, we consider the possibility of autophagy upregulation as a therapeutic approach for various conditions.

1,616 citations