scispace - formally typeset
Search or ask a question
Author

L.M. Terman

Bio: L.M. Terman is an academic researcher from IBM. The author has contributed to research in topics: Inductive coupling & Inductance. The author has an hindex of 6, co-authored 6 publications receiving 723 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors analyzed short, medium, and long on-chip interconnections having linewidths of 0.45-52 /spl mu/m in a five-metal-layer structure.
Abstract: Short, medium, and long on-chip interconnections having linewidths of 0.45-52 /spl mu/m are analyzed in a five-metal-layer structure. We study capacitive coupling for short lines, inductive coupling for medium-length lines, inductance and resistance of the current return path in the power buses, and line resistive losses for the global wiring. Design guidelines and technology changes are proposed to achieve minimum delay and contain crosstalk for local and global wiring. Conditional expressions are given to determine when transmission-line effects are important for accurate delay and crosstalk prediction.

397 citations

Proceedings ArticleDOI
18 May 1997
TL;DR: In this article, the authors analyzed short, medium and long on-chip interconnections having line widths of 0.45-52 /spl mu/m in a five-metal-layer structure and proposed design guidelines and technology changes to achieve minimum delay and contain crosstalk for local and global wiring.
Abstract: Short, medium and long on-chip interconnections having line widths of 0.45-52 /spl mu/m are analyzed in a five-metal-layer structure. We study capacitive coupling for short lines, inductive coupling for medium-length lines, inductance and resistance of the current return path in the power buses and line resistive losses for the global wiring. Design guidelines and technology changes are proposed to achieve minimum delay and contain crosstalk for local and global wiring. Conditional expressions are given to determine when transmission-line effects are important for accurate delay and crosstalk prediction.

86 citations

Proceedings ArticleDOI
27 Oct 1997
TL;DR: In this article, the importance of inductance and inductive coupling for accurate delay and crosstalk prediction in on-chip interconnections is investigated experimentally for the top three layers in a five-layer wiring structure and guidelines are formulated.
Abstract: The importance of inductance and inductive coupling for accurate delay and crosstalk prediction in on-chip interconnections is investigated experimentally for the top three layers in a five-layer wiring structure and guidelines are formulated. In-plane and between-plane crosstalk and delay dependence on driver and receiver circuit device sizes and line lengths and width are analyzed with representative CMOS circuits. Simplified constant-parameter, distributed coupled-line RLC-circuit representation that approximates the waveforms predicted with frequency-dependent line parameters is shown to be feasible.

39 citations


Cited by
More filters
Journal ArticleDOI
01 Apr 2001
TL;DR: Wires that shorten in length as technologies scale have delays that either track gate delays or grow slowly relative to gate delays, which is good news since these "local" wires dominate chip wiring.
Abstract: Concern about the performance of wires wires in scaled technologies has led to research exploring other communication methods. This paper examines wire and gate delays as technologies migrate from 0.18-/spl mu/m to 0.035-/spl mu/m feature sizes to better understand the magnitude of the the wiring problem. Wires that shorten in length as technologies scale have delays that either track gate delays or grow slowly relative to gate delays. This result is good news since these "local" wires dominate chip wiring. Despite this scaling of local wire performance, computer-aided design (CAD) tools must still become move sophisticated in dealing with these wires. Under scaling, the total number of wires grows exponentially, so CAD tools will need to handle an ever-growing percentage of all the wires in order to keep designer workloads constant. Global wires present a more serious problem to designers. These are wires that do not scale in length since they communicate signals across the chip. The delay of these wives will remain constant if repeaters are used meaning that relative to gate delays, their delays scale upwards. These increased delays for global communication will drive architectures toward modular designs with explicit global latency mechanisms.

1,486 citations

Journal ArticleDOI
01 Jun 2000
TL;DR: Optical interconnects to silicon CMOS chips are discussed in this paper, where various arguments for introducing optical interconnections to silicon chips are summarized, and the challenges for optical, optoelectronic, and integration technologies are discussed.
Abstract: The various arguments for introducing optical interconnections to silicon CMOS chips are summarized, and the challenges for optical, optoelectronic, and integration technologies are discussed. Optics could solve many physical problems of interconnects, including precise clock distribution, system synchronization (allowing larger synchronous zones, both on-chip and between chips), bandwidth and density of long interconnections, and reduction of power dissipation. Optics may relieve a broad range of design problems, such as crosstalk, voltage isolation, wave reflection, impedence matching, and pin inductance. It may allow continued scaling of existing architectures and enable novel highly interconnected or high-bandwidth architectures. No physical breakthrough is required to implement dense optical interconnects to silicon chips, though substantial technological work remains. Cost is a significant barrier to practical introduction, though revolutionary approaches exist that might achieve economies of scale. An Appendix analyzes scaling of on-chop global electrical interconnects, including line inductance and the skin effect, both of which impose significant additional constraints on future interconnects.

1,233 citations

Journal ArticleDOI
01 Apr 1997
TL;DR: In this article, the key challenges in further scaling of CMOS technology into the nanometer (sub-100 nm) regime in light of fundamental physical effects and practical considerations are discussed, including power supply and threshold voltage, short-channel effect, gate oxide, high-field effects, dopant number fluctuations and interconnect delays.
Abstract: Starting with a brief review on 0.1-/spl mu/m (100 nm) CMOS status, this paper addresses the key challenges in further scaling of CMOS technology into the nanometer (sub-100 nm) regime in light of fundamental physical effects and practical considerations. Among the issues discussed are: lithography, power supply and threshold voltage, short-channel effect, gate oxide, high-field effects, dopant number fluctuations and interconnect delays. The last part of the paper discusses several alternative or unconventional device structures, including silicon-on-insulator (SOI), SiGe MOSFET's, low-temperature CMOS, and double-gate MOSFET's, which may lead to the outermost limits of silicon scaling.

861 citations

Journal ArticleDOI
01 May 2001
TL;DR: In this review paper various high-speed interconnect effects are briefly discussed, recent advances in transmission line macromodeling techniques are presented, and simulation of high- speed interconnects using model-reduction-based algorithms is discussed in detail.
Abstract: With the rapid developments in very large-scale integration (VLSI) technology, design and computer-aided design (CAD) techniques, at both the chip and package level, the operating frequencies are fast reaching the vicinity of gigahertz and switching times are getting to the subnanosecond levels. The ever increasing quest for high-speed applications is placing higher demands on interconnect performance and highlighted the previously negligible effects of interconnects such as ringing, signal delay, distortion, reflections, and crosstalk. In this review paper various high-speed interconnect effects are briefly discussed. In addition, recent advances in transmission line macromodeling techniques are presented. Also, simulation of high-speed interconnects using model-reduction-based algorithms is discussed in detail.

645 citations

Journal ArticleDOI
TL;DR: The importance of inductance in high-performance very large scale integration (VLSI) design methodologies will increase as technologies scale, as the error between the RC and RLC models increases as the gate parasitic impedances decrease with technology scaling.
Abstract: A closed-form expression for the propagation delay of a CMOS gate driving a distributed RLC line is introduced that is within 5% of dynamic circuit simulations for a wide range of RLC loads. It is shown that the error in the propagation delay if inductance is neglected and the interconnect is treated as a distributed RC line can be over 35% for current on-chip interconnect. It is also shown that the traditional quadratic dependence of the propagation delay on the length of the interconnect for RC lines approaches a linear dependence as inductance effects increase. On-chip inductance is therefore expected to have a profound effect on traditional high-performance integrated circuit (IC) design methodologies. The closed-form delay model is applied to the problem of repeater insertion in RLC interconnect. Closed-form solutions are presented for inserting repeaters into RLC lines that are highly accurate with respect to numerical solutions. RC models can create errors of up to 30% in the total propagation delay of a repeater system as compared to the optimal delay if inductance is considered. The error between the RC and RLC models increases as the gate parasitic impedances decrease with technology scaling. Thus, the importance of inductance in high-performance very large scale integration (VLSI) design methodologies will increase as technologies scale.

424 citations