scispace - formally typeset
Search or ask a question
Author

L. N. da Costa

Bio: L. N. da Costa is an academic researcher from Harvard University. The author has contributed to research in topics: Galaxy & Redshift. The author has an hindex of 80, co-authored 434 publications receiving 26295 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the cosmological results from a combined analysis of galaxy clustering and weak gravitational lensing, using 1321 deg2 of griz imaging data from the first year of the Dark Energy Survey (DES Y1), were presented.
Abstract: We present cosmological results from a combined analysis of galaxy clustering and weak gravitational lensing, using 1321 deg2 of griz imaging data from the first year of the Dark Energy Survey (DES Y1). We combine three two-point functions: (i) the cosmic shear correlation function of 26 million source galaxies in four redshift bins, (ii) the galaxy angular autocorrelation function of 650,000 luminous red galaxies in five redshift bins, and (iii) the galaxy-shear cross-correlation of luminous red galaxy positions and source galaxy shears. To demonstrate the robustness of these results, we use independent pairs of galaxy shape, photometric-redshift estimation and validation, and likelihood analysis pipelines. To prevent confirmation bias, the bulk of the analysis was carried out while "blind" to the true results; we describe an extensive suite of systematics checks performed and passed during this blinded phase. The data are modeled in flat ΛCDM and wCDM cosmologies, marginalizing over 20 nuisance parameters, varying 6 (for ΛCDM) or 7 (for wCDM) cosmological parameters including the neutrino mass density and including the 457×457 element analytic covariance matrix. We find consistent cosmological results from these three two-point functions and from their combination obtain S8≡σ8(Ωm/0.3)0.5=0.773-0.020+0.026 and Ωm=0.267-0.017+0.030 for ΛCDM; for wCDM, we find S8=0.782-0.024+0.036, Ωm=0.284-0.030+0.033, and w=-0.82-0.20+0.21 at 68% C.L. The precision of these DES Y1 constraints rivals that from the Planck cosmic microwave background measurements, allowing a comparison of structure in the very early and late Universe on equal terms. Although the DES Y1 best-fit values for S8 and Ωm are lower than the central values from Planck for both ΛCDM and wCDM, the Bayes factor indicates that the DES Y1 and Planck data sets are consistent with each other in the context of ΛCDM. Combining DES Y1 with Planck, baryonic acoustic oscillation measurements from SDSS, 6dF, and BOSS and type Ia supernovae from the Joint Lightcurve Analysis data set, we derive very tight constraints on cosmological parameters: S8=0.802±0.012 and Ωm=0.298±0.007 in ΛCDM and w=-1.00-0.04+0.05 in wCDM. Upcoming Dark Energy Survey analyses will provide more stringent tests of the ΛCDM model and extensions such as a time-varying equation of state of dark energy or modified gravity.

1,201 citations

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Fausto Acernese3  +1319 moreInstitutions (78)
02 Nov 2017-Nature
TL;DR: A measurement of the Hubble constant is reported that combines the distance to the source inferred purely from the gravitational-wave signal with the recession velocity inferred from measurements of the redshift using the electromagnetic data.
Abstract: On 17 August 2017, the Advanced LIGO1 and Virgo2 detectors observed the gravitational-wave event GW170817—a strong signal from the merger of a binary neutron-star system3. Less than two seconds after the merger, a γ-ray burst (GRB 170817A) was detected within a region of the sky consistent with the LIGO–Virgo-derived location of the gravitational-wave source4, 5, 6. This sky region was subsequently observed by optical astronomy facilities7, resulting in the identification8, 9, 10, 11, 12, 13 of an optical transient signal within about ten arcseconds of the galaxy NGC 4993. This detection of GW170817 in both gravitational waves and electromagnetic waves represents the first ‘multi-messenger’ astronomical observation. Such observations enable GW170817 to be used as a ‘standard siren’14, 15, 16, 17, 18 (meaning that the absolute distance to the source can be determined directly from the gravitational-wave measurements) to measure the Hubble constant. This quantity represents the local expansion rate of the Universe, sets the overall scale of the Universe and is of fundamental importance to cosmology. Here we report a measurement of the Hubble constant that combines the distance to the source inferred purely from the gravitational-wave signal with the recession velocity inferred from measurements of the redshift using the electromagnetic data. In contrast to previous measurements, ours does not require the use of a cosmic ‘distance ladder’19: the gravitational-wave analysis can be used to estimate the luminosity distance out to cosmological scales directly, without the use of intermediate astronomical distance measurements. We determine the Hubble constant to be about 70 kilometres per second per megaparsec. This value is consistent with existing measurements20, 21, while being completely independent of them. Additional standard siren measurements from future gravitational-wave sources will enable the Hubble constant to be constrained to high precision.

892 citations

Journal ArticleDOI
B. Flaugher1, H. T. Diehl1, K. Honscheid2, T. M. C. Abbott, O. Alvarez1, R. Angstadt1, J. Annis1, M. Antonik3, O. Ballester4, L. Beaufore2, Gary Bernstein5, R. A. Bernstein6, B. Bigelow7, Marco Bonati, D. Boprie7, David J. Brooks3, E. Buckley-Geer1, J. Campa, L. Cardiel-Sas4, Francisco J. Castander8, Javier Castilla, H. Cease1, J. M. Cela-Ruiz, S. Chappa1, Edward C. Chi1, C. Cooper7, L. N. da Costa, E. Dede7, G. Derylo1, Darren L. DePoy9, J. De Vicente, Peter Doel3, Alex Drlica-Wagner1, J. Eiting2, Ann Elliott2, J. Emes10, Juan Estrada1, A. Fausti Neto, D. A. Finley1, R. Flores1, Josh Frieman11, Josh Frieman1, D. W. Gerdes7, Michael D. Gladders11, B. Gregory, G. Gutierrez1, Jiangang Hao1, S.E. Holland10, Scott Holm1, D. Huffman1, Cheryl Jackson1, David J. James, M. Jonas1, Armin Karcher10, I. Karliner12, Steve Kent1, Richard Kessler11, Mark Kozlovsky1, Richard G. Kron11, Donna Kubik1, Kyler Kuehn13, S. E. Kuhlmann14, K. Kuk1, Ofer Lahav3, A. Lathrop1, J. Lee10, Michael Levi10, P. Lewis15, Tianjun Li9, I. Mandrichenko1, Jennifer L. Marshall9, G. Martinez, K. W. Merritt1, Ramon Miquel4, Ramon Miquel16, F. Munoz, Eric H. Neilsen1, Robert C. Nichol17, Brian Nord1, Ricardo L. C. Ogando, Jamieson Olsen1, N. Palaio9, K. Patton2, John Peoples1, A. A. Plazas18, A. A. Plazas19, J. Rauch1, Kevin Reil15, J.-P. Rheault9, Natalie A. Roe10, H. Rogers15, A. Roodman15, A. Roodman20, E. J. Sanchez, V. Scarpine1, Rafe Schindler15, Ricardo Schmidt, R. Schmitt1, Michael Schubnell7, Katherine Schultz1, P. Schurter, L. Scott1, S. Serrano8, Terri Shaw1, Robert Connon Smith, Marcelle Soares-Santos1, A. Stefanik1, W. Stuermer1, E. Suchyta2, A. Sypniewski7, G. Tarle7, Jon J Thaler12, R. Tighe, C. Tran10, Douglas L. Tucker1, Alistair R. Walker, G. Wang10, M. Watson1, Curtis Weaverdyck7, W. C. Wester1, Robert J. Woods1, Brian Yanny1 
TL;DR: The Dark Energy Camera as mentioned in this paper was designed and constructed by the Dark Energy Survey Collaboration, and meets or exceeds the stringent requirements designed for the wide-field and supernova surveys for which the collaboration uses it.
Abstract: The Dark Energy Camera is a new imager with a 2.2-degree diameter field of view mounted at the prime focus of the Victor M. Blanco 4-meter telescope on Cerro Tololo near La Serena, Chile. The camera was designed and constructed by the Dark Energy Survey Collaboration, and meets or exceeds the stringent requirements designed for the wide-field and supernova surveys for which the collaboration uses it. The camera consists of a five element optical corrector, seven filters, a shutter with a 60 cm aperture, and a CCD focal plane of 250 micron thick fully-depleted CCDs cooled inside a vacuum Dewar. The 570 Mpixel focal plane comprises 62 2kx4k CCDs for imaging and 12 2kx2k CCDs for guiding and focus. The CCDs have 15 microns x15 microns pixels with a plate scale of 0.263 arc sec per pixel. A hexapod system provides state-of-the-art focus and alignment capability. The camera is read out in 20 seconds with 6-9 electrons readout noise. This paper provides a technical description of the camera's engineering, construction, installation, and current status.

844 citations

Journal ArticleDOI
T. M. C. Abbott, F. B. Abdalla1, Jelena Aleksić2, S. Allam3  +153 moreInstitutions (43)
TL;DR: In this paper, the authors presented the results of the Dark Energy Survey (DES) 2013, 2014, 2015, 2016, 2017, 2018, 2019 and 2019 at the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign.
Abstract: US Department of Energy; US National Science Foundation; Ministry of Science and Education of Spain; Science and Technology Facilities Council of the United Kingdom; Higher Education Funding Council for England; National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign; Kavli Institute of Cosmological Physics at the University of Chicago; Center for Cosmology and Astro-Particle Physics at the Ohio State University; Mitchell Institute for Fundamental Physics and Astronomy at Texas AM University; Financiadora de Estudos e Projetos; Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and the Ministerio da Ciencia; Tecnologia e Inovacao; Deutsche Forschungsgemeinschaft; Collaborating Institutions in the Dark Energy Survey; National Science Foundation [AST-1138766]; University of California at Santa Cruz; University of Cambridge, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid; University of Chicago, University College London; DES-Brazil Consortium; University of Edinburgh; Eidgenossische Technische Hochschule (ETH) Zurich, Fermi National Accelerator Laboratory; University of Illinois at Urbana-Champaign; Institut de Ciencies de l'Espai (IEEC/CSIC); Institut de Fisica d'Altes Energies, Lawrence Berkeley National Laboratory; Ludwig-Maximilians Universitat Munchen; European Research Council [FP7/291329]; MINECO [AYA2012-39559, ESP2013-48274, FPA2013-47986]; Centro de Excelencia Severo Ochoa [SEV-2012-0234]; European Research Council under the European Union [240672, 291329, 306478]

789 citations

Journal ArticleDOI
Philip S. Cowperthwaite1, Edo Berger1, V. A. Villar1, Brian D. Metzger2  +158 moreInstitutions (47)
TL;DR: In this article, the Gordon and Betty Moore Foundation (GBMF5076) and the Heising-Simons Foundation (HSPF) have contributed to the creation of the DES-Brazil Consortium.
Abstract: NSF [AST-1411763, AST-1714498, DGE 1144152, PHY-1707954, AST-1518052]; NASA [NNX15AE50G, NNX16AC22G]; National Science Foundation; Kavli Foundation; Danish National Research Foundation; Niels Bohr International Academy; DARK Cosmology Centre; Gordon & Betty Moore Foundation; Heising-Simons Foundation; UCSC; Alfred P. Sloan Foundation; David and Lucile Packard Foundation; European Research Council [ERC-StG-335936]; Gordon and Betty Moore Foundation [GBMF5076]; DOE (USA); NSF (USA); MISE (Spain); STFC (UK); HEFCE (UK); NCSA (UIUC); KICP (U. Chicago); CCAPP (Ohio State); MIFPA (Texas AM); MINECO (Spain); DFG (Germany); CNPQ (Brazil); FAPERJ (Brazil); FINEP (Brazil); Argonne Lab; UC Santa Cruz; University of Cambridge; CIEMAT-Madrid; University of Chicago; University College London; DES-Brazil Consortium; University of Edinburgh; ETH Zurich; Fermilab; University of Illinois; ICE (IEEC-CSIC); IFAE Barcelona; Lawrence Berkeley Lab; LMU Munchen; Excellence Cluster Universe; University of Michigan; NOAO; University of Nottingham; Ohio State University; University of Pennsylvania; University of Portsmouth; SLAC National Lab; Stanford University; University of Sussex; Texas AM University; Gemini Observatory [GS-2017B-Q-8, GS-2017B-DD-4]

788 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Fausto Acernese3  +1131 moreInstitutions (123)
TL;DR: The association of GRB 170817A, detected by Fermi-GBM 1.7 s after the coalescence, corroborates the hypothesis of a neutron star merger and provides the first direct evidence of a link between these mergers and short γ-ray bursts.
Abstract: On August 17, 2017 at 12∶41:04 UTC the Advanced LIGO and Advanced Virgo gravitational-wave detectors made their first observation of a binary neutron star inspiral. The signal, GW170817, was detected with a combined signal-to-noise ratio of 32.4 and a false-alarm-rate estimate of less than one per 8.0×10^{4} years. We infer the component masses of the binary to be between 0.86 and 2.26 M_{⊙}, in agreement with masses of known neutron stars. Restricting the component spins to the range inferred in binary neutron stars, we find the component masses to be in the range 1.17-1.60 M_{⊙}, with the total mass of the system 2.74_{-0.01}^{+0.04}M_{⊙}. The source was localized within a sky region of 28 deg^{2} (90% probability) and had a luminosity distance of 40_{-14}^{+8} Mpc, the closest and most precisely localized gravitational-wave signal yet. The association with the γ-ray burst GRB 170817A, detected by Fermi-GBM 1.7 s after the coalescence, corroborates the hypothesis of a neutron star merger and provides the first direct evidence of a link between these mergers and short γ-ray bursts. Subsequent identification of transient counterparts across the electromagnetic spectrum in the same location further supports the interpretation of this event as a neutron star merger. This unprecedented joint gravitational and electromagnetic observation provides insight into astrophysics, dense matter, gravitation, and cosmology.

7,327 citations

Journal ArticleDOI
Nabila Aghanim1, Yashar Akrami2, Yashar Akrami3, Yashar Akrami4  +229 moreInstitutions (70)
TL;DR: In this article, the authors present cosmological parameter results from the full-mission Planck measurements of the cosmic microwave background (CMB) anisotropies, combining information from the temperature and polarization maps and the lensing reconstruction.
Abstract: We present cosmological parameter results from the final full-mission Planck measurements of the cosmic microwave background (CMB) anisotropies, combining information from the temperature and polarization maps and the lensing reconstruction Compared to the 2015 results, improved measurements of large-scale polarization allow the reionization optical depth to be measured with higher precision, leading to significant gains in the precision of other correlated parameters Improved modelling of the small-scale polarization leads to more robust constraints on manyparameters,withresidualmodellinguncertaintiesestimatedtoaffectthemonlyatthe05σlevelWefindgoodconsistencywiththestandard spatially-flat6-parameter ΛCDMcosmologyhavingapower-lawspectrumofadiabaticscalarperturbations(denoted“base ΛCDM”inthispaper), from polarization, temperature, and lensing, separately and in combination A combined analysis gives dark matter density Ωch2 = 0120±0001, baryon density Ωbh2 = 00224±00001, scalar spectral index ns = 0965±0004, and optical depth τ = 0054±0007 (in this abstract we quote 68% confidence regions on measured parameters and 95% on upper limits) The angular acoustic scale is measured to 003% precision, with 100θ∗ = 10411±00003Theseresultsareonlyweaklydependentonthecosmologicalmodelandremainstable,withsomewhatincreasederrors, in many commonly considered extensions Assuming the base-ΛCDM cosmology, the inferred (model-dependent) late-Universe parameters are: HubbleconstantH0 = (674±05)kms−1Mpc−1;matterdensityparameterΩm = 0315±0007;andmatterfluctuationamplitudeσ8 = 0811±0006 We find no compelling evidence for extensions to the base-ΛCDM model Combining with baryon acoustic oscillation (BAO) measurements (and consideringsingle-parameterextensions)weconstraintheeffectiveextrarelativisticdegreesoffreedomtobe Neff = 299±017,inagreementwith the Standard Model prediction Neff = 3046, and find that the neutrino mass is tightly constrained toPmν < 012 eV The CMB spectra continue to prefer higher lensing amplitudesthan predicted in base ΛCDM at over 2σ, which pulls some parameters that affect thelensing amplitude away from the ΛCDM model; however, this is not supported by the lensing reconstruction or (in models that also change the background geometry) BAOdataThejointconstraintwithBAOmeasurementsonspatialcurvatureisconsistentwithaflatuniverse, ΩK = 0001±0002Alsocombining with Type Ia supernovae (SNe), the dark-energy equation of state parameter is measured to be w0 = −103±003, consistent with a cosmological constant We find no evidence for deviations from a purely power-law primordial spectrum, and combining with data from BAO, BICEP2, and Keck Array data, we place a limit on the tensor-to-scalar ratio r0002 < 006 Standard big-bang nucleosynthesis predictions for the helium and deuterium abundances for the base-ΛCDM cosmology are in excellent agreement with observations The Planck base-ΛCDM results are in good agreement with BAO, SNe, and some galaxy lensing observations, but in slight tension with the Dark Energy Survey’s combined-probe results including galaxy clustering (which prefers lower fluctuation amplitudes or matter density parameters), and in significant, 36σ, tension with local measurements of the Hubble constant (which prefer a higher value) Simple model extensions that can partially resolve these tensions are not favoured by the Planck data

4,688 citations

Journal Article
TL;DR: The first direct detection of gravitational waves and the first observation of a binary black hole merger were reported in this paper, with a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ.
Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160) Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

4,375 citations