scispace - formally typeset
Search or ask a question
Author

L. Shmaenok

Bio: L. Shmaenok is an academic researcher. The author has an hindex of 1, co-authored 1 publications receiving 7 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, four key issues are presented including optimization of spectral instrumentation, feasibility of a motional Stark effect (MSE) evaluation based on line ratios, first-mirror test-bed experiments at the tokamak TEXTOR, and the role of integrated data analysis for the conceptual layout of the change exchange recombination spectroscopy and MSE diagnostic.
Abstract: Supporting pilot experiments and activities which are currently considered or already performed for the development of the International Thermonuclear Experiment Reactor active beam spectroscopy diagnostic are addressed in this article. Four key issues are presented including optimization of spectral instrumentation, feasibility of a motional Stark effect (MSE) evaluation based on line ratios, “first-mirror” test-bed experiments at the tokamak TEXTOR, and finally the role of integrated data analysis for the conceptual layout of the change exchange recombination spectroscopy and MSE diagnostic.

7 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors describe the requirements for high reliability in the systems (diagnostics) that provide the measurements in the ITER environment, which is similar to those made on the present-day large tokamaks while the specification of the measurements will be more stringent.
Abstract: In order to support the operation of ITER and the planned experimental programme an extensive set of plasma and first wall measurements will be required. The number and type of required measurements will be similar to those made on the present-day large tokamaks while the specification of the measurements—time and spatial resolutions, etc—will in some cases be more stringent. Many of the measurements will be used in the real time control of the plasma driving a requirement for very high reliability in the systems (diagnostics) that provide the measurements. The implementation of diagnostic systems on ITER is a substantial challenge. Because of the harsh environment (high levels of neutron and gamma fluxes, neutron heating, particle bombardment) diagnostic system selection and design has to cope with a range of phenomena not previously encountered in diagnostic design. Extensive design and R&D is needed to prepare the systems. In some cases the environmental difficulties are so severe that new diagnostic techniques are required. a Author to whom any correspondence should be addressed.

309 citations

Journal ArticleDOI
TL;DR: The use of an injected neutral beam -either a dedicated diagnostic beam or the main heating beams - to localize and enhance the spectroscopic measurements described in Chap. 5 has been exploited for a number of key physics measurements, in particular detailed profile information on ion parameters, the radial electric field, plasma current density, and turbulent transport.
Abstract: In this chapter we discuss the various diagnostic techniques in which active spectroscopy plays a role. The use of an injected neutral beam - either a dedicated diagnostic beam or the main heating beams - to localize and enhance the spectroscopic measurements described in Chap. 5 has been exploited for a number of key physics measurements, in particular detailed profile information on ion parameters, the radial electric field, plasma current density, and turbulent transport. The ability to make these detailed measurements has been a key element in the development of improved plasma performance. The neutral beam techniques have been extended by the use of such beam analogs as laser beams, gas puffs, and pellet injection for specific measurements. In each case we describe the general principle behind the measurement and include several successful examples of their implementation, briefly touching on some of the more important physics results. We conclude with a few remarks about the relevance and re...

53 citations

Journal ArticleDOI
TL;DR: In this article, problems arising from high power ECRH under conditions of incomplete absorption are discussed, and individual standard diagnostic systems are discussed to identify their specific problems as well as the opportunities connected with long pulse operation.
Abstract: Problems related to the development of diagnostics for steady state fusion plasma experiments are discussed. The paper concentrates on those necessities already appearing in current non-burning plasma fusion experiments when extending pulse lengths beyond 10 s, i.e. thermal load, erosion, deposition and long-time signal integration in magnetic diagnostics. Problems arising from high power ECRH under conditions of incomplete absorption are outlined. Individual standard diagnostic systems are discussed to identify their specific problems as well as the opportunities connected with long pulse operation. Burning plasma experiments characterized by intense n- and γ-radiation are briefly reviewed for reasons of completeness, dealing with radiation induced processes in windows, fibres, cables and mirrors. Methods of data handling, real time monitoring and plasma control are outlined.

50 citations

Journal Article
TL;DR: In this paper, a motional Stark effect (MSE) diagnostic based on the relative line intensities and spacing of Stark split D(alpha) emission from the neutral beams is described.
Abstract: We describe a version of a motional Stark effect (MSE) diagnostic based on the relative line intensities and spacing of Stark split D(alpha) emission from the neutral beams. This system, named B-Stark, has been recently installed on the DIII-D tokamak. To find the magnetic pitch angle, we use the ratio of the intensities of the pi(3) and sigma(1) lines. These lines originate from the same upper level and so are not dependent on the level populations. In future devices, such as ITER, this technique may have advantages over diagnostics based on MSE polarimetry. We have done an optimization of the viewing direction for the available ports on DIII-D to choose the installation location. With this placement, we have a near optimal viewing angle of 59.6 degrees from the vertical direction. All hardware has been installed for one chord, and we have been routinely taking data since January 2007. We fit the spectra using a simple Stark model in which the upper level populations of the D(alpha) transition are treated as free variables. The magnitude and direction of the magnetic field obtained using this diagnostic technique compare well with measurements from MSE polarimetry and EFIT.

25 citations

Journal ArticleDOI
TL;DR: A version of a motional Stark effect (MSE) diagnostic based on the relative line intensities and spacing of Stark split D(alpha) emission from the neutral beams, recently installed on the DIII-D tokamak.
Abstract: We describe a version of a motional Stark effect (MSE) diagnostic based on the relative line intensities and spacing of Stark split Dα emission from the neutral beams. This system, named B-Stark, has been recently installed on the DIII-D tokamak. To find the magnetic pitch angle, we use the ratio of the intensities of the π3 and σ1 lines. These lines originate from the same upper level and so are not dependent on the level populations. In future devices, such as ITER, this technique may have advantages over diagnostics based on MSE polarimetry. We have done an optimization of the viewing direction for the available ports on DIII-D to choose the installation location. With this placement, we have a near optimal viewing angle of 59.6° from the vertical direction. All hardware has been installed for one chord, and we have been routinely taking data since January 2007. We fit the spectra using a simple Stark model in which the upper level populations of the Dα transition are treated as free variables. The magnitude and direction of the magnetic field obtained using this diagnostic technique compare well with measurements from MSE polarimetry and EFIT.

23 citations