scispace - formally typeset
Search or ask a question
Author

L. Spanhel

Bio: L. Spanhel is an academic researcher. The author has contributed to research in topics: Crystal growth. The author has an hindex of 1, co-authored 1 publications receiving 76 citations.

Papers
More filters

Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the decoupling of quantum effects on excitation and emission is described, along with the use of quantum dots as sensitizers in phosphors, and the multimodal applications of quantum dot, including in electroluminescence device, solar cell and biological imaging.
Abstract: Semiconducting quantum dots, whose particle sizes are in the nanometer range, have very unusual properties. The quantum dots have band gaps that depend in a complicated fashion upon a number of factors, described in the article. Processing-structure-properties-performance relationships are reviewed for compound semiconducting quantum dots. Various methods for synthesizing these quantum dots are discussed, as well as their resulting properties. Quantum states and confinement of their excitons may shift their optical absorption and emission energies. Such effects are important for tuning their luminescence stimulated by photons (photoluminescence) or electric field (electroluminescence). In this article, decoupling of quantum effects on excitation and emission are described, along with the use of quantum dots as sensitizers in phosphors. In addition, we reviewed the multimodal applications of quantum dots, including in electroluminescence device, solar cell and biological imaging.

964 citations

Journal ArticleDOI
TL;DR: The synthesis and recent advances of ZnO NPs in the biomedical fields are summarized, which will be helpful for facilitating their future research progress and focusing on biomedical fields.
Abstract: Zinc oxide nanoparticles (ZnO NPs) are used in an increasing number of industrial products such as rubber, paint, coating, and cosmetics In the past two decades, ZnO NPs have become one of the most popular metal oxide nanoparticles in biological applications due to their excellent biocompatibility, economic, and low toxicity ZnO NPs have emerged a promising potential in biomedicine, especially in the fields of anticancer and antibacterial fields, which are involved with their potent ability to trigger excess reactive oxygen species (ROS) production, release zinc ions, and induce cell apoptosis In addition, zinc is well known to keep the structural integrity of insulin So, ZnO NPs also have been effectively developed for antidiabetic treatment Moreover, ZnO NPs show excellent luminescent properties and have turned them into one of the main candidates for bioimaging Here, we summarize the synthesis and recent advances of ZnO NPs in the biomedical fields, which will be helpful for facilitating their future research progress and focusing on biomedical fields

645 citations

Journal ArticleDOI
TL;DR: In this paper, the authors give an overview of the development and implications of nanotechnology in photocatalysis, including the use of nanoparticles in doped, coupled, capped, sensitized and organic-inorganic nanocomposite semiconductor systems, with an effort to enhance photocatalytic and optical properties of commonly used semiconductor materials.
Abstract: The aim of this review paper is to give an overview of the development and implications of nanotechnology in photocatalysis. The topics covered include a detailed look at the unique properties of nanoparticles and their relation to photocatalytic properties. Current applications of and research into the use of nanoparticles as photocatalysts has also been reviewed. Also covered is the utilization of nanoparticles in doped, coupled, capped, sensitized and organic–inorganic nanocomposite semiconductor systems, with an effort to enhance photocatalytic and/or optical properties of commonly used semiconductor materials. The use of nanocrystalline thin films in electrochemically assisted photocatalytic processes has been included. Finally, the use of nanoparticles has made a significant contribution in providing definitive mechanistic information regarding the photocatalytic process.

606 citations

Proceedings ArticleDOI
17 Sep 2007
TL;DR: In this article, stable, OH free zinc oxide (ZnO) nanoparticles were synthesized by hydrothermal method by varying the growth temperature and concentration of the precursors.
Abstract: Stable, OH free zinc oxide (ZnO) nanoparticles were synthesized by hydrothermal method by varying the growth temperature and concentration of the precursors. The formation of ZnO nanoparticles were confirmed by x-ray diffraction (XRD), transmission electron microscopy (TEM) and selected area electron diffraction (SAED) studies. The average particle size have been found to be about 7-24 nm and the compositional analysis is done with inductively coupled plasma atomic emission spectroscopy (ICP-AES). Diffuse reflectance spectroscopy (DRS) results shows that the band gap of ZnO nanoparticles is blue shifted with decrease in particle size. Photoluminescence properties of ZnO nanoparticles at room temperature were studied and the green photoluminescent emission from ZnO nanoparticles can originate from the oxygen vacancy or ZnO interstitial related defects.

196 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review the nanostructural processing (synthesis) of submicrometersized particles by a spray method, which provides a restricted reaction environment (such as pores or cages) in the matrix for their synthesis and handling.

164 citations