scispace - formally typeset
Search or ask a question
Author

L. Theilmann

Bio: L. Theilmann is an academic researcher. The author has contributed to research in topics: NS3 & Viral replication. The author has an hindex of 1, co-authored 1 publications receiving 2924 citations.

Papers
More filters
Journal ArticleDOI
02 Jul 1999-Science
TL;DR: This work defines the structure of HCV replicons functional in cell culture and provides the basis for a long-sought cellular system that should allow detailed molecular studies ofHCV and the development of antiviral drugs.
Abstract: An estimated 170 million persons worldwide are infected with hepatitis C virus (HCV), a major cause of chronic liver disease. Despite increasing knowledge of genome structure and individual viral proteins, studies on virus replication and pathogenesis have been hampered by the lack of reliable and efficient cell culture systems. A full-length consensus genome was cloned from viral RNA isolated from an infected human liver and used to construct subgenomic selectable replicons. Upon transfection into a human hepatoma cell line, these RNAs were found to replicate to high levels, permitting metabolic radiolabeling of viral RNA and proteins. This work defines the structure of HCV replicons functional in cell culture and provides the basis for a long-sought cellular system that should allow detailed molecular studies of HCV and the development of antiviral drugs.

2,982 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The institution of blood-screening measures in developed countries has decreased the risk of transfusion-associated hepatitis to a negligible level, but new cases continue to occur mainly as a result of injection-drug use and, to a lesser degree, through other means of percutaneous or mucous-membrane exposure.
Abstract: Hepatitis C virus (HCV) infects an estimated 170 million persons worldwide and thus represents a viral pandemic, one that is five times as widespread as infection with the human immunodeficiency virus type 1 (HIV-1). The institution of blood-screening measures in developed countries has decreased the risk of transfusion-associated hepatitis to a negligible level, but new cases continue to occur mainly as a result of injection-drug use and, to a lesser degree, through other means of percutaneous or mucous-membrane exposure. Progression to chronic disease occurs in the majority of HCV-infected persons, and infection with the virus has become the main indication . . .

2,966 citations

Journal ArticleDOI
TL;DR: It is shown that the JFH1 genome replicates efficiently and supports secretion of viral particles after transfection into a human hepatoma cell line (Huh7) and provides a powerful tool for studying the viral life cycle and developing antiviral strategies.
Abstract: Hepatitis C virus (HCV) infection causes chronic liver diseases and is a global public health problem. Detailed analyses of HCV have been hampered by the lack of viral culture systems. Subgenomic replicons of the JFH1 genotype 2a strain cloned from an individual with fulminant hepatitis replicate efficiently in cell culture. Here we show that the JFH1 genome replicates efficiently and supports secretion of viral particles after transfection into a human hepatoma cell line (Huh7). Particles have a density of about 1.15–1.17 g/ml and a spherical morphology with an average diameter of about 55 nm. Secreted virus is infectious for Huh7 cells and infectivity can be neutralized by CD81-specific antibodies and by immunoglobulins from chronically infected individuals. The cell culture–generated HCV is infectious for chimpanzee. This system provides a powerful tool for studying the viral life cycle and developing antiviral strategies.

2,809 citations

Journal ArticleDOI
22 Jul 2005-Science
TL;DR: A full-length HCV genome that replicates and produces virus particles that are infectious in cell culture (HCVcc) is described, suggesting that this in vitro system will aid in the search for improved antiviral compounds.
Abstract: Many aspects of the hepatitis C virus (HCV) life cycle have not been reproduced in cell culture, which has slowed research progress on this important human pathogen. Here, we describe a full-length HCV genome that replicates and produces virus particles that are infectious in cell culture (HCVcc). Replication of HCVcc was robust, producing nearly 10(5) infectious units per milliliter within 48 hours. Virus particles were filterable and neutralized with a monoclonal antibody against the viral glycoprotein E2. Viral entry was dependent on cellular expression of a putative HCV receptor, CD81. HCVcc replication was inhibited by interferon-alpha and by several HCV-specific antiviral compounds, suggesting that this in vitro system will aid in the search for improved antivirals.

2,305 citations

01 Jan 2007
TL;DR: The present research attacked the Flavivirus infection through two mechanisms: Membrane Reorganization and the Compartmentalization and Assembly and Release of Particles from Flaviv virus-infected Cells and Host Resistance to Flaviviral Infection.
Abstract: FLAVIVIRUSES 1103 Background and Classification 1103 Structure and Physical Properties of the Virion 1104 Binding and Entry 1105 Genome Structure 1106 Translation and Proteolytic Processing 1107 Features of the Structural Proteins 1108 Features of the Nonstructural Proteins 1109 RNA Replication 1112 Membrane Reorganization and the Compartmentalization of Flavivirus Replication 1112 Assembly and Release of Particles from Flavivirus-infected Cells 1112 Host Resistance to Flavivirus Infection 1113

1,867 citations

Journal ArticleDOI
TL;DR: A simple yet robust HCV cell culture infection system based on the HCV JFH-1 molecular clone and Huh-7-derived cell lines that allows the production of virus that can be efficiently propagated in tissue culture is reported.
Abstract: The absence of a robust cell culture model of hepatitis C virus (HCV) infection has severely limited analysis of the HCV life cycle and the development of effective antivirals and vaccines. Here we report the establishment of a simple yet robust HCV cell culture infection system based on the HCV JFH-1 molecular clone and Huh-7-derived cell lines that allows the production of virus that can be efficiently propagated in tissue culture. This system provides a powerful tool for the analysis of host-virus interactions that should facilitate the discovery of antiviral drugs and vaccines for this important human pathogen.

1,766 citations