scispace - formally typeset
Search or ask a question
Author

Lain-Yen Hu

Other affiliations: Scion
Bio: Lain-Yen Hu is an academic researcher from Pfizer. The author has contributed to research in topics: Androgen Receptor Antagonists & Androgen receptor. The author has an hindex of 12, co-authored 38 publications receiving 600 citations. Previous affiliations of Lain-Yen Hu include Scion.

Papers
More filters
Journal ArticleDOI
TL;DR: Subsequent evaluation against the rat DAAO enzyme revealed a divergent SAR versus the human enzyme and may explain the high exposures of drug necessary to achieve significant changes in rat or mouse cerebellum D-serine.
Abstract: 3-Hydroxyquinolin-2(1H)-one (2) was discovered by high throughput screening in a functional assay to be a potent inhibitor of human DAAO, and its binding affinity was confirmed in a Biacore assay. Cocrystallization of 2 with the human DAAO enzyme defined the binding site and guided the design of new analogues. The SAR, pharmacokinetics, brain exposure, and effects on cerebellum D-serine are described. Subsequent evaluation against the rat DAAO enzyme revealed a divergent SAR versus the human enzyme and may explain the high exposures of drug necessary to achieve significant changes in rat or mouse cerebellum D-serine.

108 citations

Journal ArticleDOI
TL;DR: A series of substituted diphenylguanidines 6 which are structurally related to N-1-naphthyl-N'-(3-ethylphenyl)-N'-methylguanidine found that the binding affinity of guanidine of type 6 could be further enhanced with the appropriate substitution at R3, and the structure--activity relationships for these compounds at the NMDA receptor ion-channel site are discussed.
Abstract: In the mammalian central nervous system, the N-methyl-d-aspartate (NMDA) subclass of glutamate receptors may play an important role in brain diseases such as stroke, brain or spinal cord trauma, ep...

83 citations

Patent
10 Feb 1992
TL;DR: In this paper, the use of substituted guanidines, N'-aminoguanidines and N, N', N', n', N''-tetrasubstituted hydrazinedicarboximidamides, and pharmaceutical compositions thereof are disclosed.
Abstract: Modulators of neurotransmitter release including substituted guanidines, N'-aminoguanidines, and N, N', N', N''-tetrasubstituted hydrazinedicarboximidamides, and pharmaceutical compositions thereof are disclosed. Also disclosed are methods involving the use of such neurotransmitter release modulators for the treatment or prevention of pathophysiologic conditions characterized by the release of excessive or inappropriate levels of neurotransmitters. Also disclosed are screening assays for compounds which selectively inhibit glutamate release. Also disclosed are methods of blocking voltage sensitive sodium and calcium channels in mammalian nerve cells.

62 citations

Journal ArticleDOI
TL;DR: In vitro studies show that the partition coefficients of the three model compounds in artificial sebum L were similar to that of human sebum, whereas the hamster ear and bodysebum, and other three artificialsebum samples were different from that ofhuman sebum.

60 citations

Journal ArticleDOI
TL;DR: The structure-activity relationships leading to novel tri- and tetrasubstituted guanidines, which exhibit high selectivity for NMDA receptor ion channel sites and weak or negligible affinity for sigma receptors are presented.
Abstract: Diarylguanidines, acting as NMDA receptor ion channel site ligands, represent a new class of potential neuroprotective drugs. Several diarylguanidines structurally related to N,N'-di-o-tolylguanidine (DTG), a known selective sigma receptor ligand, were synthesized and evaluated in in vitro radioligand displacement assays, with rat or guinea pig brain membrane homogenates, using the NMDA receptor ion channel site specific radioligand [3H]-(+)-5(S)-methyl-10(R),11-dihydro-5H-dibenzo[a,d]cyclohepten-5 ,10- imine (MK-801, 3), and the sigma receptor-specific radioligand [3H]-di-o-tolylguanidine (DTG, 5). This paper presents the structure-activity relationships leading to novel tri- and tetrasubstituted guanidines, which exhibit high selectivity for NMDA receptor ion channel sites and weak or negligible affinity for sigma receptors. The in vitro binding results from symmetrically substituted diphenylguanidines indicated that compounds having ortho or meta substituents (with respect to the position of the guanidine nitrogen) on the phenyl rings showed greater affinity for the NMDA receptor ion channel site compared with para-substituted derivatives. Among the group of ring substituents studied for symmetrical diarylguanidines, an isopropyl group was preferred at the ortho position and an ethyl group was preferred at the meta position. Several unsymmetrical guanidines containing a naphthalene ring on one nitrogen atom and an ortho- or a meta-substituted phenyl ring on the second nitrogen atom, e.g., N-1-naphthyl-N'-(3-ethylphenyl)guanidine (36), showed a 3-5-fold increase in affinity for the NMDA receptor ion channel site and no change in sigma receptor affinity compared to the respective symmetrical counterparts. Additional small substituents on the guanidine nitrogen atoms bearing the aryl rings resulted in tri- and tetrasubstituted guanidine derivatives which retained affinity for NMDA receptor ion channel sites but exhibited a significant reduction in their affinities for sigma receptors. For example, N-1-naphthyl-N'-(3-ethylphenyl)-N'-methylguanidine (40) showed high affinity for the NMDA receptor ion channel site (IC50 = 36 nM vs [3H]-3) and low affinity for sigma receptors (IC50 = 2540 nM vs [3H]-5). Selectivity for the NMDA receptor ion channel sites over sigma receptors appears to be dependent upon the structure of the additional substituents on the guanidine nitrogen atoms bearing the aryl groups. Methyl and ethyl substituents are most preferred in the tri- and tetrasubstituted diarylguanidines. The trisubstituted guanidine, N-1-naphthyl-N'-(3-ethylphenyl)-N'-methylguanidine (40) and its close analogues showed good in vivo neuroprotection and are potential neuroprotective drug candidates for the treatment of stroke and other neurodegenerative disorders.

57 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This research presents a novel, scalable, and scalable approaches that can be applied to the rapidly changing and rapidly changing environment of drug discovery and development.
Abstract: Fraser F. Fleming,* Lihua Yao, P. C. Ravikumar, Lee Funk, and Brian C. Shook Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282-1530, Mylan Pharmaceuticals Inc., 781 Chestnut Ridge Road, Morgantown, West Virginia 26505, and Johnson & Johnson Pharmaceutical Research and Development, L.L.C., Welsh and McKean Roads, P.O. Box 776, Spring House, Pennsylvania 19477

1,058 citations

Journal ArticleDOI
TL;DR: The subunit structure and composition of the ionotropic and metabotropic glutamate receptors are described and their pharmacology is discussed, particularly with respect to selective tools useful for investigation of their function in the CNS.
Abstract: l-Glutamate is the major excitatory neurotransmitter in the central nervous system (CNS) and mediates its actions via activation of both ionotropic and metabotropic receptor families. The development of selective ligands, including competitive agonists and antagonists and positive and negative allosteric modulators, has enabled investigation of the functional roles of glutamate receptor family members. In this review we describe the subunit structure and composition of the ionotropic and metabotropic glutamate receptors and discuss their pharmacology, particularly with respect to selective tools useful for investigation of their function in the CNS. A large number of ligands are now available that are selective either for glutamate receptor subfamilies or for particular receptor subtypes. Such ligands have enabled considerable advances in the elucidation of the physiological and pathophysiological roles of receptor family members. Furthermore, efficacy in animal models of neurological and psychiatric disorders has supported the progression of several glutamatergic ligands into clinical studies. These include ionotropic glutamate receptor antagonists, which have entered clinical trials for disorders including epilepsy and ischaemic stroke, α-amino-3-hydroxy-5-methyl-4-isoazolepropionic acid (AMPA) receptor positive allosteric modulators which are under evaluation as cognitive enhancers, and metabotropic glutamate receptor 2 (mGluR2) agonists which are undergoing clinical evaluation as anxiolytics. Furthermore, preclinical studies have illustrated therapeutic potential for ligands selective for other receptor subtypes in various disorders. These include mGluR1 antagonists in pain, mGluR5 antagonists in anxiety, pain and drug abuse and mGluR5 positive allosteric modulators in schizophrenia. Selective pharmacological tools have enabled the study of glutamate receptors. However, pharmacological coverage of the family is incomplete and considerable scope remains for the development of novel ligands, particularly those with in vivo utility, and for the their use together with existing tools for the further investigation of the roles of receptor family members in CNS function and as potentially novel therapeutics.

760 citations

Journal ArticleDOI
TL;DR: An overview of the most commonly employed carboxylic acid (bio)isosteres is provided and representative examples demonstrating the use and utility of each isostere in drug design are presented.
Abstract: The carboxylic acid functional group can be an important constituent of a pharmacophore, however, the presence of this moiety can also be responsible for significant drawbacks, including metabolic instability, toxicity, as well as limited passive diffusion across biological membranes. To avoid some of these shortcomings while retaining the desired attributes of the carboxylic acid moiety, medicinal chemists often investigate the use of carboxylic acid (bio)isosteres. The same type of strategy can also be effective for a variety other purposes, for example, to increase the selectivity of a biologically active compound or to create new intellectual property. Several carboxylic acid isosteres have been reported, however, the outcome of any isosteric replacement cannot be readily predicted as this strategy is generally found to be dependent upon the particular context (i.e., the characteristic properties of the drug and the drug–target). As a result, screening of a panel of isosteres is typically required. In this context, the discovery and development of novel carboxylic acid surrogates that could complement the existing palette of isosteres remains an important area of research. The goal of this Minireview is to provide an overview of the most commonly employed carboxylic acid (bio)isosteres and to present representative examples demonstrating the use and utility of each isostere in drug design.

340 citations

Journal ArticleDOI
TL;DR: Pharmacology and pharmacokinetics of memantine and other NMDA-receptor antagonists in comparison with currently approved drugs for dementia treatment have been discussed and the focus is on 'glutamate excitotoxicity' and glutamate receptors as drug target.

292 citations